Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542330

RESUMEN

Angiogenesis is a critical physiological response to ischemia but becomes pathological when dysregulated and driven excessively by inflammation. We recently identified a novel angiogenic role for tripartite-motif-containing protein 2 (TRIM2) whereby lentiviral shRNA-mediated TRIM2 knockdown impaired endothelial angiogenic functions in vitro. This study sought to determine whether these effects could be translated in vivo and to determine the molecular mechanisms involved. CRISPR/Cas9-generated Trim2-/- mice that underwent a periarterial collar model of inflammation-induced angiogenesis exhibited significantly less adventitial macrophage infiltration relative to wildtype (WT) littermates, concomitant with decreased mRNA expression of macrophage marker Cd68 and reduced adventitial proliferating neovessels. Mechanistically, TRIM2 knockdown in endothelial cells in vitro attenuated inflammation-driven induction of critical angiogenic mediators, including nuclear HIF-1α, and curbed the phosphorylation of downstream effector eNOS. Conversely, in a hindlimb ischemia model of hypoxia-mediated angiogenesis, there were no differences in blood flow reperfusion to the ischemic hindlimbs of Trim2-/- and WT mice despite a decrease in proliferating neovessels and arterioles. TRIM2 knockdown in vitro attenuated hypoxia-driven induction of nuclear HIF-1α but had no further downstream effects on other angiogenic proteins. Our study has implications for understanding the role of TRIM2 in the regulation of angiogenesis in both pathophysiological contexts.


Asunto(s)
Angiogénesis , Células Endoteliales , Animales , Ratones , Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/metabolismo , Isquemia/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genética
2.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35328786

RESUMEN

Peripheral arterial disease (PAD) is characterised by accelerated arterial calcification and impairment in angiogenesis. Studies implicate vascular calcification as a contributor to PAD, but the mechanisms remain unclear. We aimed to determine the effect of calcification on ischaemia-driven angiogenesis. Human coronary artery endothelial cells (ECs) were treated with calcification medium (CM: CaCl2 2.7 mM, Na2PO4 2.0 mM) for 24 h and exposed to normoxia (5% CO2) or hypoxia (1.2% O2; 5% CO2 balanced with N2). In normoxia, CM significantly inhibited tubule formation and migration and upregulated calcification markers of ALP, BMP2, and Runx2. CM elevated levels of calcification-protective gene OPG, demonstrating a compensatory mechanism by ECs. CM failed to induce pro-angiogenic regulators VEGFA and HIF-1α in hypoxia and further suppressed the phosphorylation of endothelial nitric oxide synthase (eNOS) that is essential for vascular function. In vivo, osteoprotegerin-deficient mice (OPG-/-), a calcification model, were subjected to hind-limb ischaemia (HLI) surgery. OPG-/- mice displayed elevated serum alkaline phosphatase (ALP) activity compared to wild-type controls. OPG-/- mice experienced striking reductions in blood-flow reperfusion in both 8-week-old and 6-month-old mice post-HLI. This coincided with significant impairment in tissue ischaemia and reduced limb function as assessed by clinical scoring (Tarlov). This study demonstrated for the first time that a pro-calcific environment is detrimental to ischaemia-driven angiogenesis. The degree of calcification in patients with PAD can often be a limiting factor with the use of standard therapies. These highly novel findings require further studies for full elucidation of the mechanisms involved and have implications for the development of therapies to suppress calcification in PAD.


Asunto(s)
Enfermedad Arterial Periférica , Calcificación Vascular , Animales , Dióxido de Carbono , Células Endoteliales , Humanos , Hipoxia , Isquemia , Ratones , Neovascularización Patológica
3.
Front Pharmacol ; 12: 718679, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483928

RESUMEN

Diabetes mellitus is estimated to affect up to 700 million people by the year 2045, contributing to an immense health and economic burden. People living with diabetes have a higher risk of developing numerous debilitating vascular complications, leading to an increased need for medical care, a reduced quality of life and increased risk of early death. Current treatments are not satisfactory for many patients who suffer from impaired angiogenesis in response to ischaemia, increasing their risk of ischaemic cardiovascular conditions. These vascular pathologies are characterised by endothelial dysfunction and abnormal angiogenesis, amongst a host of impaired signaling pathways. Therapeutic stimulation of angiogenesis holds promise for the treatment of diabetic vascular complications that stem from impaired ischaemic responses. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis to improve ischaemic complications such as ischaemic heart disease and peripheral artery disease, highlighting the immense unmet need. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis in a clinical setting, highlighting the immense unmet need. MicroRNAs (miRNAs) are emerging as powerful targets for multifaceted diseases including diabetes and cardiovascular disease. This review highlights the potential role of microRNAs as therapeutic targets for rescuing diabetes-impaired angiogenesis, with a specific focus on miR-181c, which we have previously identified as an important angiogenic regulator. Here we summarise the pathways currently known to be regulated by miR-181c, which include the classical angiogenesis pathways that are dysregulated in diabetes, mitochondrial function and axonal guidance, and describe how these relate both directly and indirectly to angiogenesis. The pleiotropic actions of miR-181c across multiple key angiogenic signaling pathways and critical cellular processes highlight its therapeutic potential as a novel target for treating diabetic vascular complications.

4.
Diabetologia ; 64(6): 1402-1411, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33651121

RESUMEN

AIMS/HYPOTHESIS: Diabetes is a major burden on Australia's Indigenous population, with high rates of disease and vascular complications. Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. MicroRNAs (miRNAs) are key players in the regulation of angiogenesis. HDL-cholesterol (HDL-c) levels are inversely associated with the risk of developing diabetic complications and HDL can carry miRNAs. HDL-miRNA profiles differ in disease states and may present as biomarkers with the capacity to act as bioactive signalling molecules. Recent studies have demonstrated that HDL becomes dysfunctional in a diabetic environment, losing its vasculo-protective effects and becoming more pro-atherogenic. We sought to determine whether HDL-associated miRNA profiles and HDL functionality were predictive of the severity of diabetic vascular complications in Australia's Indigenous population. METHODS: HDL was isolated from plasma samples from Indigenous participants without diabetes ('Healthy'), with type 2 diabetes mellitus ('T2DM') and with diabetes-associated macrovascular complications (specifically peripheral artery disease, 'T2DM+Comp'). To assess HDL angiogenic capacity, human coronary artery endothelial cells were treated with PBS, reconstituted HDL (rHDL, positive control) or isolated HDL and then exposed to high-glucose (25 mmol/l) conditions. The expression levels of two anti-angiogenic miRNAs (miR-181c-5p and miR-223-3p) and one pro-angiogenic miRNA (miR-27b-3p) were measured in the HDL fraction, plasma and treated human coronary artery endothelial cells by quantitative real-time PCR. In vitro endothelial tubule formation was assessed using the Matrigel tubulogenesis assay. RESULTS: Strikingly, we found that the levels of the anti-angiogenic miRNA miR-181c-5p were 14-fold higher (1454 ± 1346%) in the HDL from Aboriginal people with diabetic complications compared with both the Healthy (100 ± 121%, p < 0.05) and T2DM (82 ± 77%, p < 0.05) groups. Interestingly, we observed a positive correlation between HDL-associated miR-181c-5p levels and disease severity (p = 0.0020). Under high-glucose conditions, cells treated with rHDL, Healthy HDL and T2DM HDL had increased numbers of tubules (rHDL: 136 ± 8%, p < 0.01; Healthy HDL: 128 ± 6%, p < 0.01; T2DM HDL: 124 ± 5%, p < 0.05) and branch points (rHDL: 138 ± 8%, p < 0.001; Healthy HDL: 128 ± 6%, p < 0.01; T2DM HDL: 127 ± 5%, p < 0.01) concomitant with elevations in mRNA levels of the key hypoxia angiogenic transcription factor HIF1A (rHDL: 140 ± 10%, p < 0.01; Healthy HDL: 136 ± 8%, p < 0.01; T2DM HDL: 133 ± 9%, p < 0.05). However, this increase in angiogenic capacity was not observed in cells treated with T2DM + Comp HDL (tubule numbers: 113 ± 6%, p = 0.32; branch points: 113 ± 5%, p = 0.28; HIF1A: 117 ± 6%, p = 0.43), which could be attributed to the increase in cellular miR-181c-5p levels (T2DM + Comp HDL: 136 ± 7% vs PBS: 100 ± 9%, p < 0.05). CONCLUSIONS/INTERPRETATION: In conclusion, HDL from Aboriginal people with diabetic complications had reduced angiogenic capacity. This impairment is associated with an increase in the expression of anti-angiogenic miR-181c-5p. These findings provide the rationale for a new way to better inform clinical diagnosis of disease severity with the potential to incorporate targeted, personalised HDL-miRNA intervention therapies to prevent further development of, or to reverse, diabetic vascular complications in Australian Aboriginal people.


Asunto(s)
HDL-Colesterol/sangre , Angiopatías Diabéticas/sangre , MicroARNs/sangre , Australia , Biomarcadores/sangre , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nativos de Hawái y Otras Islas del Pacífico
5.
J Clin Med ; 8(12)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847094

RESUMEN

Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.

6.
Diabetes ; 68(5): 1040-1053, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765336

RESUMEN

Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, reduces lower limb amputations in patients with type 2 diabetes. The mechanism is, however, unknown. In this study, we demonstrate that fenofibrate markedly attenuates diabetes-related impairment of ischemia-mediated angiogenesis. In a murine model of hindlimb ischemia, daily oral fenofibrate treatment restored diabetes-impaired blood flow recovery, foot movement, hindlimb capillary density, vessel diameter, and vascular endothelial growth factor signaling to nondiabetic levels in both wild-type and PPARα-knockout mice, indicating that these fenofibrate effects are largely PPARα independent. In vitro, fenofibric acid (FFA) rescued high glucose-induced (25 mmol/L) impairment of endothelial cell migration, tubulogenesis, and survival in a PPARα-independent manner. Interestingly, fenofibrate in vivo and FFA in vitro reversed high glucose-induced expression of thioredoxin-interacting protein (TXNIP), an exquisitely glucose-inducible gene previously identified as a critical mediator of diabetes-related impairment in neovascularization. Conversely, adenoviral overexpression of TXNIP abrogated the restorative effects of FFA on high glucose-impaired endothelial cell function in vitro, indicating that the effects of FFA are mediated by TXNIP. We conclude that fenofibrate rescues diabetic impairment in ischemia-mediated angiogenesis, in large part, by PPARα-independent regulation of TXNIP. These findings may therefore explain the reduction in amputations seen in patients with diabetes treated with fenofibrate.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fenofibrato/uso terapéutico , Isquemia/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Animales , Proteínas Portadoras/metabolismo , Fenofibrato/análogos & derivados , Glucosa/farmacología , Miembro Posterior/efectos de los fármacos , Miembro Posterior/patología , Isquemia/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos
7.
Sci Rep ; 8(1): 13596, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206364

RESUMEN

Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. We recently found that reconstituted high-density lipoproteins (rHDL) rescue diabetes-impaired angiogenesis. microRNAs (miRNAs) regulate angiogenesis and are transported within HDL to sites of injury/repair. The role of miRNAs in the rescue of diabetes-impaired angiogenesis by rHDL is unknown. Using a miRNA array, we found that rHDL inhibits hsa-miR-181c-5p expression in vitro and using a hsa-miR-181c-5p mimic and antimiR identify a novel anti-angiogenic role for miR-181c-5p. miRNA expression was tracked over time post-hindlimb ischaemic induction in diabetic mice. Early post-ischaemia when angiogenesis is important, rHDL suppressed hindlimb mmu-miR-181c-5p. mmu-miR-181c-5p was not detected in the plasma or within HDL, suggesting rHDL specifically targets mmu-miR-181c-5p at the ischaemic site. Three known angiogenic miRNAs (mmu-miR-223-3p, mmu-miR-27b-3p, mmu-miR-92a-3p) were elevated in the HDL fraction of diabetic rHDL-infused mice early post-ischaemia. This was accompanied by a decrease in plasma levels. Only mmu-miR-223-3p levels were elevated in the hindlimb 3 days post-ischaemia, indicating that rHDL regulates mmu-miR-223-3p in a time-dependent and site-specific manner. The early regulation of miRNAs, particularly miR-181c-5p, may underpin the rescue of diabetes-impaired angiogenesis by rHDL and has implications for the treatment of diabetes-related vascular complications.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Angiopatías Diabéticas/metabolismo , Lipoproteínas HDL/metabolismo , MicroARNs/metabolismo , Neovascularización Fisiológica , Animales , Línea Celular , Diabetes Mellitus Experimental/patología , Humanos , Masculino , Ratones
8.
Int J Mol Sci ; 19(7)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29958463

RESUMEN

Angiogenesis, the process of forming new blood vessels, is crucial in the physiological response to ischemia, though it can be detrimental as part of inflammation and tumorigenesis. We have previously shown that high-density lipoproteins (HDL) modulate angiogenesis in a context-specific manner via distinct classical signalling pathways, enhancing hypoxia-induced angiogenesis while suppressing inflammatory-driven angiogenesis. Whether additional novel targets exist to account for these effects are unknown. A microarray approach identified two novel genes, cyclic-adenosine-monophosphate-response-element-binding protein 3 regulatory factor (CREBRF) and tripartite motif-containing protein 2 (TRIM2) that were upregulated by reconstituted HDL (rHDL). We measured CREBRF and TRIM2 expression in human coronary artery endothelial cells following incubation with rHDL and exposure to either hypoxia or an inflammatory stimulus. We found that CREBRF and TRIM2 mRNA were significantly upregulated by rHDL, particularly in response to its phospholipid component 1-palmitoyl-2-linoleoyl-phosphatidylcholine, however, protein expression was not significantly altered. Knockdown of TRIM2 impaired endothelial cell tubulogenesis in vitro in both hypoxia and inflammation, implying a necessary role in angiogenesis. Furthermore, TRIM2 knockdown attenuated rHDL-induced tubule formation in hypoxia, suggesting that it is important in mediating the pro-angiogenic action of rHDL. Our study has implications for understanding the regulation of angiogenesis in both of these pathophysiological contexts by HDL.


Asunto(s)
Lipoproteínas HDL/genética , Neovascularización Patológica/genética , Proteínas Nucleares/genética , Proteínas Supresoras de Tumor/genética , Carcinogénesis/genética , Hipoxia de la Célula/genética , Línea Celular , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/genética , Inflamación/patología , Lipoproteínas HDL/farmacología , Neovascularización Patológica/patología , Fosfatidilcolinas/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
9.
Clin Exp Metastasis ; 35(7): 649-661, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29936575

RESUMEN

Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-κB inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40 mg/kg in 10% ethanol/saline), DMAPT (100 mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation. DMAPT treatment slowed normal tumour development in TRAMP mice, extending the time-to-palpable prostate tumour by 20%. PTL did not slow overall tumour development, while the ethanol/saline vehicle used to administer PTL unexpectedly induced an aggressive metastatic tumour phenotype. Chronic ethanol/saline vehicle upregulated expression of NF-κB, MMP2, integrin ß1, collagen IV, and laminin, and induced vascular basement membrane degradation in primary prostate tumours, as well as increased metastatic spread to the lung and liver. All of these changes were largely prevented by co-administration with PTL. DMAPT (in water) reduced metastasis to below that of water-control. These data suggest that DMAPT has the potential to be used as a cancer preventive and anti-metastatic therapy for prostate cancer. Although low levels of ethanol consumption have not been shown to strongly correlate with prostate cancer epidemiology, these results would support a potential effect of chronic low dose ethanol on metastasis and the TRAMP model provides a useful system in which to further explore the mechanisms involved.


Asunto(s)
Etanol/toxicidad , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Sesquiterpenos/farmacología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Animales , Progresión de la Enfermedad , Interacciones Farmacológicas , Femenino , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Metástasis de la Neoplasia
10.
FASEB J ; 32(6): 2911-2922, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401597

RESUMEN

High-density lipoproteins augment hypoxia-induced angiogenesis by inducing the key angiogenic vascular endothelial growth factor A (VEGFA) and total protein levels of its receptor 2 (VEGFR2). The activation/phosphorylation of VEGFR2 is critical for mediating downstream, angiogenic signaling events. This study aimed to determine whether reconstituted high-density lipoprotein (rHDL) activates VEGFR2 phosphorylation and the downstream signaling events and the importance of VEGFR2 in the proangiogenic effects of rHDL in hypoxia. In vitro, rHDL increased VEGFR2 activation and enhanced phosphorylation of downstream, angiogenic signaling proteins ERK1/2 and p38 MAPK in hypoxia. Incubation with a VEGFR2-neutralizing antibody attenuated rHDL-induced phosphorylation of VEGFR2, ERK1/2, p38 MAPK, and tubule formation. In a murine model of ischemia-driven neovascularization, rHDL infusions enhanced blood perfusion and augmented capillary and arteriolar density. Infusion of a VEGFR2-neutralizing antibody ablated those proangiogenic effects of rHDL. Circulating Sca1+/CXCR4+ angiogenic progenitor cell levels, important for neovascularization in response to ischemia, were higher in rHDL-infused mice 3 d after ischemic induction, but that did not occur in mice that also received the VEGFR2-neutralizing antibody. In summary, VEGFR2 has a key role in the proangiogenic effects of rHDL in hypoxia/ischemia. These findings have therapeutic implications for angiogenic diseases associated with an impaired response to tissue ischemia.-Cannizzo, C. M., Adonopulos, A. A., Solly, E. L., Ridiandries, A., Vanags, L. Z., Mulangala, J., Yuen, S. C. G., Tsatralis, T., Henriquez, R., Robertson, S., Nicholls, S. J., Di Bartolo, B. A., Ng, M. K. C., Lam, Y. T., Bursill, C. A., Tan, J. T. M. VEGFR2 is activated by high-density lipoproteins and plays a key role in the proangiogenic action of HDL in ischemia.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Isquemia/metabolismo , Lipoproteínas HDL/metabolismo , Sistema de Señalización de MAP Quinasas , Neovascularización Fisiológica , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Isquemia/patología , Isquemia/fisiopatología , Lipoproteínas HDL/antagonistas & inhibidores , Ratones , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA