Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSphere ; 4(5)2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511370

RESUMEN

Antibiotic resistance is a global crisis that threatens our ability to treat bacterial infections, such as tuberculosis, caused by Mycobacterium tuberculosis Of the 10 million cases of tuberculosis in 2017, approximately 19% of new cases and 43% of previously treated cases were caused by strains of M. tuberculosis resistant to at least one frontline antibiotic. There is a clear need for new therapies that target these genetically resistant strains. Here, we report the discovery of a new series of antimycobacterial compounds, 4-amino-thieno[2,3-d]pyrimidines, that potently inhibit the growth of M. tuberculosis To elucidate the mechanism by which these compounds inhibit M. tuberculosis, we selected for mutants resistant to a representative 4-amino-thieno[2,3-d]pyrimidine and sequenced these strains to identify the mutations that confer resistance. We isolated a total of 12 resistant mutants, each of which harbored a nonsynonymous mutation in the gene qcrB, which encodes a subunit of the electron transport chain (ETC) enzyme cytochrome bc1 oxidoreductase, leading us to hypothesize that 4-amino-thieno[2,3-d]pyrimidines target this enzyme complex. We found that addition of 4-amino-thieno[2,3-d]pyrimidines to M. tuberculosis cultures resulted in a decrease in ATP levels, supporting our model that these compounds inhibit the M. tuberculosis ETC. Furthermore, 4-amino-thieno[2,3-d]pyrimidines had enhanced activity against a mutant of M. tuberculosis deficient in cytochrome bd oxidase, which is a hallmark of cytochrome bc1 inhibitors. Therefore, 4-amino-thieno[2,3-d]pyrimidines represent a novel series of QcrB inhibitors that build on the growing number of chemical scaffolds that are able to inhibit the mycobacterial cytochrome bc1 complex.IMPORTANCE The global tuberculosis (TB) epidemic has been exacerbated by the rise in drug-resistant TB cases worldwide. To tackle this crisis, it is necessary to identify new vulnerable drug targets in Mycobacterium tuberculosis, the causative agent of TB, and develop compounds that can inhibit the bacterium through novel mechanisms of action. The QcrB subunit of the electron transport chain enzyme cytochrome bc1 has recently been validated to be a potential drug target. In the current work, we report the discovery of a new class of QcrB inhibitors, 4-amino-thieno[2,3-d]pyrimidines, that potently inhibit M. tuberculosis growth in vitro These compounds are chemically distinct from previously reported QcrB inhibitors, and therefore, 4-amino-thieno[2,3-d]pyrimidines represent a new scaffold that can be exploited to inhibit this drug target.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Pirimidinas/farmacología , Antibióticos Antituberculosos/química , Proteínas Bacterianas/genética , Descubrimiento de Drogas , Complejo III de Transporte de Electrones/genética , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Pirimidinas/química
2.
Proc Natl Acad Sci U S A ; 116(21): 10510-10517, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31061116

RESUMEN

Mycobacterium tuberculosis (Mtb) killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of Mtb that are resistant to frontline antibiotics. Thus, both phenotypic drug tolerance and genetic drug resistance are major obstacles to successful TB therapy. Using a chemical approach to identify compounds that block stress and drug tolerance, as opposed to traditional screens for compounds that kill Mtb, we identified a small molecule, C10, that blocks tolerance to oxidative stress, acid stress, and the frontline antibiotic isoniazid (INH). In addition, we found that C10 prevents the selection for INH-resistant mutants and restores INH sensitivity in otherwise INH-resistant Mtb strains harboring mutations in the katG gene, which encodes the enzyme that converts the prodrug INH to its active form. Through mechanistic studies, we discovered that C10 inhibits Mtb respiration, revealing a link between respiration homeostasis and INH sensitivity. Therefore, by using C10 to dissect Mtb persistence, we discovered that INH resistance is not absolute and can be reversed.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Isoniazida , Mycobacterium tuberculosis/efectos de los fármacos , Evaluación Preclínica de Medicamentos
3.
MMWR Morb Mortal Wkly Rep ; 68(21): 469-473, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31145717

RESUMEN

In August 2017, Hurricane Harvey caused unprecedented flooding and devastation to the Houston metropolitan area (1). Mold exposure was a serious concern because investigations after Hurricanes Katrina and Rita (2005) had documented extensive mold growth in flood-damaged homes (2,3). Because mold exposure can cause serious illnesses known as invasive mold infections (4,5), and immunosuppressed persons are at high risk for these infections (6,7), several federal agencies recommend that immunosuppressed persons avoid mold-contaminated sites (8,9). To assess the extent of exposure to mold and flood-damaged areas among persons at high risk for invasive mold infections after Hurricane Harvey, CDC and Texas health officials conducted a survey among 103 immunosuppressed residents in Houston. Approximately half of the participants (50) engaged in cleanup of mold and water-damaged areas; these activities included heavy cleanup (23), such as removing furniture or removing drywall, or light cleanup (27), such as wiping down walls or retrieving personal items. Among immunosuppressed persons who performed heavy cleanup, 43% reported wearing a respirator, as did 8% who performed light cleanup. One participant reported wearing all personal protective equipment (PPE) recommended for otherwise healthy persons (i.e., respirator, boots, goggles, and gloves). Immunosuppressed residents who are at high risk for invasive mold infections were exposed to mold and flood-damaged areas after Hurricane Harvey; recommendations from health care providers to avoid exposure to mold and flood-damaged areas could mitigate the risk to immunosuppressed persons.


Asunto(s)
Tormentas Ciclónicas , Desastres , Exposición a Riesgos Ambientales/estadística & datos numéricos , Hongos , Huésped Inmunocomprometido , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Infecciones Fúngicas Invasoras/epidemiología , Medición de Riesgo , Texas/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...