Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 913: 169683, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38160832

RESUMEN

Exposure to wildfire smoke and dust can severely affect air quality and health. Although particulate matter (PM) levels and exposure are well-established metrics linking to health outcomes, they do not consider differences in particle toxicity or deposition location in the respiratory tract (RT). Usage of the oxidative potential (OP) exposure may further shape our understanding on how different pollution events impact health. Towards this goal, we estimate the aerosol deposition rates, OP and resulting OP deposition rates in the RT for a typical adult Caucasian male residing in Athens, Greece. We focus on a period when African dust (1-3 of August 2021) and severe wildfires at the northern part of the Attika peninsula and the Evia island, Greece (4-18 of August 2021) affected air quality in Athens. During these periods, the aerosol levels increased twofold leading to exceedances of the World Health Organization (WHO) [15(5) µg m-3] PM10 (PM2.5) air quality standard by almost 100 %. We show that the OP exposure is 1.5-times larger during the wildfire smoke events than during the dust intrusion, even if the latter was present in higher mass loads - because wildfire smoke has a higher specific OP than dust. This result carries two important implications: OP exposure should be synergistically used with other metrics - such as PM levels - to efficiently link aerosol exposure with the resulting health effects, and, certain sources of air pollution (in our case, exposure to biomass burning smoke) may need to be preferentially controlled, whenever possible, owing to their disproportionate contribution to OP exposure and ability to penetrate deeper into the human RT.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Incendios Forestales , Adulto , Humanos , Masculino , Polvo , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Humo/efectos adversos , Sistema Respiratorio/química , Estrés Oxidativo
2.
Sci Rep ; 13(1): 7531, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161051

RESUMEN

Forecasting volcanic ash atmospheric pathways is of utmost importance for aviation. Volcanic ash can interfere with aircraft navigational instruments and can damage engine parts. Early warning systems, activated after volcanic eruptions can alleviate the impacts on aviation by providing forecasts of the volcanic ash plume dispersion. The quality of these short-term forecasts is subject to the accuracy of the meteorological wind fields used for the initialization of regional models. Here, we use wind profiling data from the first high spectral resolution lidar in space, Aeolus, to examine the impact of measured wind fields on regional NWP and subsequent volcanic ash dispersion forecasts, focusing on the case of Etna's eruption on March 2021. The results from this case study demonstrate a significant improvement of the volcanic ash simulation when using Aeolus-assimilated meteorological fields, with differences in wind speed reaching up to 8 m/s when compared to the control run. When comparing the volcanic ash forecast profiles with downwind surface-based aerosol lidar observations, the modeled field is consistent with the measurements only when Aeolus winds are assimilated. This result clearly demonstrates the potential of Aeolus and highlights the necessity of future wind profiling satellite missions for improving volcanic ash forecasting and hence aviation safety.

4.
Sci Rep ; 11(1): 6411, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742004

RESUMEN

Ice particles in high-altitude cold clouds can obstruct aircraft functioning. Over the last 20 years, there have been more than 150 recorded cases with engine power-loss and damage caused by tiny cloud ice crystals, which are difficult to detect with aircraft radars. Herein, we examine two aircraft accidents for which icing linked to convective weather conditions has been officially reported as the most likely reason for catastrophic consequences. We analyze whether desert mineral dust, known to be very efficient ice nuclei and present along both aircraft routes, could further augment the icing process. Using numerical simulations performed by a coupled atmosphere-dust model with an included parameterization for ice nucleation triggered by dust aerosols, we show that the predicted ice particle number sharply increases at approximate locations and times of accidents where desert dust was brought by convective circulation to the upper troposphere. We propose a new icing parameter which, unlike existing icing indices, for the first time includes in its calculation the predicted dust concentration. This study opens up the opportunity to use integrated atmospheric-dust forecasts as warnings for ice formation enhanced by mineral dust presence.

5.
Environ Dev Sustain ; 23(7): 10623-10645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230388

RESUMEN

In the first part, this work reports that during the global "anthropopause" period, that was imposed in March and April 2020 for limiting the spread of COVID-19, the concentrations of basic air pollutants over Europe were reduced by up to 70%. During May and June, the gradual lift of the stringent measures resulted in the recovery of these reductions with pollution concentrations approaching the levels before the lockdown by the end of June 2020. In the second part, this work examines the alleged correlations between the reported cases of COVID-19 and temperature, humidity and particulate matter for March and April 2020 in Europe. It was found that decreasing temperatures and relative humidity with increasing concentrations of particulate matter are correlated with an increase in the number of reported cases during these 2 months. However, when these calculations were repeated for May and June, we found a remarkable drop in the significance of the correlations which leads us to question the generally accepted inverse relation between pandemics and air temperature at least during the warmer months. Such a relationship could not be supported in our study for SARS-CoV-2 virus and the question remains open. In the third and last part of this work, we examine the question referring to the origin of pandemics. In this context we have examined the hypothesis that the observed climate warming in Siberia and the Arctic and the thawing of permafrost could result to the release of trapped in the permafrost pathogens in the atmosphere. We find that although such relations cannot be directly justified, they present a possible horrifying mechanism for the origin of viruses in the future during the developing global warming of our planet in the decades to come. Overall the findings of our study indicate that: (1) the reduction of anthropogenic emissions in Europe during the "anthropopause" period of March and April 2020 was significant, but when the lockdown measures were raised the concentrations of atmospheric pollutants quickly recovered to pre-pandemic levels and therefore any possible climatic feedbacks were negligible; (2) no robust relationship between atmospheric parameters and the spread of COVID-19 cases can be justified in the warmer part of the year and (3) more research needs to be done regarding the possible links between climate change and the release of new pathogens from thawing of permafrost areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...