Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Microbiol Spectr ; : e0139223, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768091

RESUMEN

Latin-American Mediterranean (LAM) family is one of the most significant and global genotypes of Mycobacterium tuberculosis. Here, we used the murine model to study the virulence and lethality of the genetically and epidemiologically distinct LAM strains. The pathobiological characteristics of the four LAM strains (three drug resistant and one drug susceptible) and the susceptible reference strain H37Rv were studied in the C57BL/6 mouse model. The whole-genome sequencing was performed using the HiSeq Illumina platform, followed by bioinformatics and phylogenetic analysis. The susceptible strain H37Rv showed the highest virulence. Drug-susceptible LAM strain (spoligotype SIT264) was more virulent than three multidrug-resistant (MDR) strains (SIT252, SIT254, and SIT266). All three MDR isolates were low lethal, while the susceptible isolate and H37Rv were moderately/highly lethal. Putting the genomic, phenotypic, and virulence features of the LAM strains/spoligotypes in the context of their dynamic phylogeography over 20 years reveals three types of relationships between virulence, resistance, and transmission. First, the most virulent and more lethal drug-susceptible SIT264 increased its circulation in parts of Russia. Second, moderately virulent and pre-XDR SIT266 was prevalent in Belarus and continues to be visible in North-West Russia. Third, the low virulent and MDR strain SIT252 previously considered as emerging has disappeared from the population. These findings suggest that strain virulence impacts the transmission, irrespective of drug resistance properties. The increasing circulation of susceptible but more virulent and lethal strains implies that personalized TB treatment should consider not only resistance but also the virulence of the infecting M. tuberculosis strains. IMPORTANCE The study is multidisciplinary and investigates the epidemically/clinically important and global lineage of Mycobacterium tuberculosis, named Latin-American-Mediterranean (LAM), yet insufficiently studied with regard to its pathobiology. We studied different LAM strains (epidemic vs endemic and resistant vs susceptible) in the murine model and using whole-genome analysis. We also collected long-term, 20-year data on their prevalence in Eurasia. The findings are both expected and unexpected. (i) We observe that a drug-susceptible but highly virulent strain increased its prevalence. (ii) By contrast, the multidrug-resistant (MDR) but low-virulent, low-lethal strain (that we considered as emerging 15 years ago) has almost disappeared. (iii) Finally, an intermediate case is the MDR strain with moderate virulence that continues to circulate. We conclude that (i) the former and latter strains are the most hazardous and require close epidemiological monitoring, and (ii) personalized TB treatment should consider not only drug resistance but also the virulence of the infecting strains and development of anti-virulence drugs is warranted.

2.
BMC Infect Dis ; 23(1): 426, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353765

RESUMEN

BACKGROUND: . The Mycobacterium tuberculosis Beijing genotype is globally spread lineage with important medical properties that however vary among its subtypes. M. tuberculosis Beijing 14717-15-cluster was recently discovered as both multidrug-resistant, hypervirulent, and highly-lethal strain circulating in the Far Eastern region of Russia. Here, we aimed to analyze its pathogenomic features and phylogeographic pattern. RESULTS: . The study collection included M. tuberculosis DNA collected between 1996 and 2020 in different world regions. The bacterial DNA was subjected to genotyping and whole genome sequencing followed by bioinformatics and phylogenetic analysis. The PCR-based assay to detect specific SNPs of the Beijing 14717-15-cluster was developed and used for its screening in the global collections. Phylogenomic and phylogeographic analysis confirmed endemic prevalence of the Beijing 14717-15-cluster in the Asian part of Russia, and distant common ancestor with isolates from Korea (> 115 SNPs). The Beijing 14717-15-cluster isolates had two common resistance mutations RpsL Lys88Arg and KatG Ser315Thr and belonged to spoligotype SIT269. The Russian isolates of this cluster were from the Asian Russia while 4 isolates were from the Netherlands and Spain. The cluster-specific SNPs that significantly affect the protein function were identified in silico in genes within different categories (lipid metabolism, regulatory proteins, intermediary metabolism and respiration, PE/PPE, cell wall and cell processes). CONCLUSIONS: . We developed a simple method based on real-time PCR to detect clinically significant MDR and hypervirulent Beijing 14717-15-cluster. Most of the identified cluster-specific mutations were previously unreported and could potentially be associated with increased pathogenic properties of this hypervirulent M. tuberculosis strain. Further experimental study to assess the pathobiological role of these mutations is warranted.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Filogeografía , Filogenia , Genotipo , Tuberculosis/epidemiología , Tuberculosis/microbiología
3.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373451

RESUMEN

This study aimed to determine phenotypic and genotypic drug resistance patterns of Mycobacterium tuberculosis strains from children with tuberculosis (TB) in China and Russia, two high-burden countries for multi/extensively-drug resistant (MDR/XDR) TB. Whole-genome sequencing data of M. tuberculosis isolates from China (n = 137) and Russia (n = 60) were analyzed for phylogenetic markers and drug-resistance mutations, followed by comparison with phenotypic susceptibility data. The Beijing genotype was detected in 126 Chinese and 50 Russian isolates. The Euro-American lineage was detected in 10 Russian and 11 Chinese isolates. In the Russian collection, the Beijing genotype and Beijing B0/W148-cluster were dominated by MDR strains (68% and 94%, respectively). Ninety percent of B0/W148 strains were phenotypically pre-XDR. In the Chinese collection, neither of the Beijing sublineages was associated with MDR/pre-XDR status. MDR was mostly caused by low fitness cost mutations (rpoB S450L, katG S315T, rpsL K43R). Chinese rifampicin-resistant strains demonstrated a higher diversity of resistance mutations than Russian isolates (p = 0.003). The rifampicin and isoniazid resistance compensatory mutations were detected in some MDR strains, but they were not widespread. The molecular mechanisms of M. tuberculosis adaptation to anti-TB treatment are not unique to the pediatric strains, but they reflect the general situation with TB in Russia and China.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Niño , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Rifampin , Filogenia , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Mycobacterium tuberculosis/genética , Federación de Rusia/epidemiología , Mutación , Genotipo , China/epidemiología , Resistencia a Medicamentos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/genética , Farmacorresistencia Bacteriana Múltiple/genética
4.
Microorganisms ; 11(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36838219

RESUMEN

The Beijing genotype is the main family of Mycobacterium tuberculosis in Russia. We analyzed its diversity and drug resistance in provinces across Northwestern Russia to identify the epidemiologically relevant Beijing strains. The study collection included 497 isolates from newly-diagnosed tuberculosis (TB) patients. Bacterial isolates were subjected to drug-susceptibility testing and genotyping. The Beijing genotype was detected in 57.5% (286/497); 50% of the Beijing strains were multidrug-resistant (MDR). Central Asian/Russian and B0/W148 groups included 176 and 77 isolates, respectively. MDR was more frequent among B0/W148 strains compared to Central Asian/Russian strains (85.7% vs. 40.3%, p < 0.0001). Typing of 24 minisatellite loci of Beijing strains revealed 82 profiles; 230 isolates were in 23 clusters. The largest Central Asian/Russian types were 94-32 (n = 75), 1065-32 (n = 17), and 95-32 (n = 12). B0/W148 types were 100-32 (n = 59) and 4737-32 (n = 5). MDR was more frequent in types 1065-32 (88.2%), 100-32 (83.1%), and 4737-32 (100%). In contrast, type 9391-32 (n = 9) included only drug-susceptible strains. To conclude, M. tuberculosis Beijing genotype is dominant in Northwestern Russia, and an active transmission of overwhelmingly MDR B0/W148 types explains the reported increase of MDR-TB. The presence of MDR-associated minor variants (type 1071-32/ancient Beijing and Central Asia Outbreak strain) in some of the studied provinces also requires attention.

5.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36145357

RESUMEN

We performed synthesis of new nitrofuranyl amides and investigated their anti-TB activity and primary genetic response of mycobacteria through whole-genome sequencing (WGS) of spontaneous resistant mutants. The in vitro activity was assessed on reference strain Mycobacterium tuberculosis H37Rv. The most active compound 11 was used for in vitro selection of spontaneous resistant mutants. The same mutations in six genes were detected in bacterial cultures grown under increased concentrations of 11 (2×, 4×, 8× MIC). The mutant positions were presented as mixed wild type and mutant alleles while increasing the concentration of the compound led to the semi-proportional and significant increase in mutant alleles. The identified genes belong to different categories and pathways. Some of them were previously reported as mediating drug resistance or drug tolerance, and counteracting oxidative and nitrosative stress, in particular: Rv0224c, fbiC, iniA, and Rv1592c. Gene-set interaction analysis revealed a certain weak interaction for gene pairs Rv1592-Rv1639c and Rv1592-Rv0224c. To conclude, this study experimentally demonstrated a multifaceted primary genetic response of M. tuberculosis to the action of nitrofurans. All three 11-treated subcultures independently presented the same six SNPs, which suggests their non-random occurrence and likely causative relationship between compound action and possible resistance mechanism.

6.
Sci Rep ; 11(1): 21392, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725411

RESUMEN

Ancient sublineage of the Mycobacterium tuberculosis Beijing genotype is endemic and prevalent in East Asia and rare in other world regions. While these strains are mainly drug susceptible, we recently identified a novel clonal group Beijing 1071-32 within this sublineage emerging in Siberia, Russia and present in other Russian regions. This cluster included only multi/extensive drug resistant (MDR/XDR) isolates. Based on the phylogenetic analysis of the available WGS data, we identified three synonymous SNPs in the genes Rv0144, Rv0373c, and Rv0334 that were specific for the Beijing 1071-32-cluster and developed a real-time PCR assay for their detection. Analysis of the 2375 genetically diverse M. tuberculosis isolates collected between 1996 and 2020 in different locations (European and Asian parts of Russia, former Soviet Union countries, Albania, Greece, China, Vietnam, Japan and Brazil), confirmed 100% specificity and sensitivity of this real-time PCR assay. Moreover, the epidemiological importance of this strain and the newly developed screening assay is further stressed by the fact that all identified Beijing 1071-32 isolates were found to exhibit MDR genotypic profiles with concomitant resistance to additional first-line drugs due to a characteristic signature of six mutations in rpoB450, rpoC485, katG315, katG335, rpsL43 and embB497. In conclusion, this study provides a set of three concordant SNPs for the detection and screening of Beijing 1071-32 isolates along with a validated real-time PCR assay easily deployable across multiple settings for the epidemiological tracking of this significant MDR cluster.


Asunto(s)
Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Beijing/epidemiología , ADN Bacteriano/análisis , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Humanos , Epidemiología Molecular , Mutación , Mycobacterium tuberculosis/aislamiento & purificación , Filogenia , Polimorfismo de Nucleótido Simple , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología
7.
Emerg Microbes Infect ; 10(1): 1691-1701, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34380361

RESUMEN

Mycobacterium tuberculosis strains of the early ancient sublineage of the Beijing genotype are mostly drug susceptible and mainly circulate in East Asia. We have recently discovered two clusters of this sublineage emerging in the Asian part of Russia (VNTR-defined 1071-32 and 14717-15 types) and, to our surprise, both were strongly MDR/XDR-associated. Here, we evaluated their pathogenic features. The clinical isolates and reference laboratory strain H37Rv were investigated in the C57BL/6 mouse model to assess their virulence and lethality properties. The BACTEC MGIT 960 system was used to study the in vitro growth characteristics. In the murine model, strains 396 (14717-15-cluster, from Buryatia, Far East) and 6691 (1071-32-cluster, from Omsk, Siberia) demonstrated contrasting properties. The 396-infected group had significantly higher mortality, more weight loss, higher bacterial burden, and more severe lung pathology. Furthermore, compared to the previously published data on other Russian epidemic Beijing strains (B0/W148, CAO, Central Asian Russian), strain 396 demonstrated the highest mortality. Under the in vitro growth experiment, cluster 14717-15 isolates had significantly shorter lag-phase. To conclude, low-virulent MDR strain 6691 belongs to the Beijing 1071-32-cluster widespread across FSU countries but at low prevalence. This corresponds to common expectation that multiple drug resistance mutations reduce fitness and virulence. In contrast, highly lethal and hypervirulent MDR strain 396 represents an intriguing Beijing 14717-15 cluster predominant only in Buryatia, Far East (16%), sporadically found beyond it, but not forming clusters of transmission. Further in-depth study of this most virulent Russian Beijing cluster is warranted.


Asunto(s)
Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/mortalidad , Animales , Antituberculosos/farmacología , Beijing , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple , Epidemias , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Federación de Rusia/epidemiología , Virulencia
8.
Antibiotics (Basel) ; 9(10)2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33022959

RESUMEN

Perchlozone ([PCZ] 4-thioureido-iminomethylpyridinium perchlorate) is a new thiosemicarbazone approved for the treatment of multidrug-resistant tuberculosis (MDR-TB) in Russia and some other countries. The ethA and hadABC mutations may confer PCZ resistance. At the same time, ethA mutations are known to mediate resistance to ethionamide (ETH) and prothionamide (PTH). We aimed to study the genetic variation underlying Mycobacterium tuberculosis resistance to PCZ through whole genome sequencing (WGS) of consecutive isolates recovered during long-term treatment. This prospective study included patients admitted in 2018-2019 to the regional tuberculosis dispensary, Kaliningrad, Russia, whose treatment regimen included PCZ. Multiple M. tuberculosis isolates were recovered during PCZ treatment, and the bacterial DNA was subjected to WGS followed by bioinformatics analysis. We identified mutations in the genes putatively associated with PCZ resistance, ethA, and hadA. The most frequent one was a frameshift ethA 106 GA > G (seven of nine patients) and most of the other mutations were also likely present before PCZ treatment. In one patient, a frameshift mutation ethA 702 CT > C emerged after six months of PCZ treatment. A frequent presence of cross-resistance mutations to PCZ and ETH/PTH should be taken into consideration when PCZ is included in the treatment regimen of MDR-TB patients.

10.
BMC Genomics ; 21(1): 567, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811436

RESUMEN

BACKGROUND: The only licensed live Bacille Calmette-Guérin (BCG) vaccine used to prevent severe childhood tuberculosis comprises genetically divergent strains with variable protective efficacy and rates of BCG-induced adverse events. The whole-genome sequencing (WGS) allowed evaluating the genome stability of BCG strains and the impact of spontaneous heterogeneity in seed and commercial lots on the efficacy of BCG-vaccines in different countries. Our study aimed to assess sequence variations and their putative effects on genes and protein functions in the BCG-1 (Russia) seed lots compared to their progeny isolates available from immunocompetent children with BCG-induced disease (mainly, osteitis). RESULTS: Based on the WGS data, we analyzed the links between seed lots 361, 367, and 368 used for vaccine manufacture in Russia in different periods, and their nine progeny isolates recovered from immunocompetent children with BCG-induced disease. The complete catalog of variants in genes relative to the reference genome (GenBank: CP013741) included 4 synonymous and 8 nonsynonymous single nucleotide polymorphisms, and 3 frameshift deletions. Seed lot 361 shared variants with 2 of 6 descendant isolates that had higher proportions of such polymorphisms in several genes, including ppsC, eccD5, and eccA5 involved in metabolism and cell wall processes and reportedly associated with virulence in mycobacteria. One isolate preserved variants of its parent seed lot 361 without gain of further changes in the sequence profile within 14 years. CONCLUSIONS: The background genomic information allowed us for the first time to follow the BCG diversity starting from the freeze-dried seed lots to descendant clinical isolates. Sequence variations in several genes of seed lot 361 did not alter the genomic stability and viability of the vaccine and appeared accumulated in isolates during the survival in the human organism. The impact of the observed variations in the context of association with the development of BCG-induced disease should be evaluated in parallel with the immune status and host genetics. Comparative genomic studies of BCG seed lots and their descendant clinical isolates represent a beneficial approach to better understand the molecular bases of efficacy and adverse events during the long-term survival of BCG in the host organism.


Asunto(s)
Mycobacterium bovis , Tuberculosis , Vacuna BCG/efectos adversos , Niño , Genoma , Humanos , Mycobacterium bovis/genética , Federación de Rusia , Tuberculosis/prevención & control
11.
Tuberculosis (Edinb) ; 122: 101937, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32501261

RESUMEN

The local situation with tuberculosis (TB) is shaped by the complex interplay of multiple factors related to both human host and Mycobacterium tuberculosis. We hypothesized that TB epidemiology in the rural regions in the Soviet Union was impacted by construction of the Gulag camps and significant incoming migration. This molecular M. tuberculosis study was conducted in 2017 in the Komi Republic in northern Russia, a region with high rate (26%) of primary multidrug-resistant (MDR) TB. MDR was detected in 30.8% (40/130) isolates; eight were extensively drug resistant. The Beijing genotype was predominant (56.2%). The main Beijing subtypes B0/W148 and 94-32 differed in the MDR rate, 83.3% and 27.2%, respectively. The non-Beijing isolates represented five genotypes (LAM, Ural, Haarlem, X, T). The proportion of Beijing B0/W148 in the "camp" cities (originated from Gulag camps) was twice as large as in other districts of the Komi Republic. To conclude, сirculation of the MDR-associated Beijing B0/W148 cluster critically influences the current situation with MDR-TB in this Russian region. The increased prevalence of B0/W148 in the urban setting on the whole, and in the "camp cities", in particular, indirectly points to the increased transmission capacity of this successful Russian strain of M. tuberculosis.


Asunto(s)
Mycobacterium tuberculosis/genética , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/transmisión , Técnicas Bacteriológicas , Campos de Concentración , Genotipo , Humanos , Epidemiología Molecular , Mycobacterium tuberculosis/patogenicidad , Fenotipo , Densidad de Población , Prevalencia , Salud Rural , Federación de Rusia/epidemiología , Esputo/microbiología , Migrantes , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/epidemiología , Virulencia
12.
Int J Antimicrob Agents ; 56(2): 106036, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32485278

RESUMEN

The Mycobacterium tuberculosis Beijing genotype is a clinically and epidemiologically important lineage that is subdivided into ancient/ancestral and modern strains. In our previous study in western Siberia, we identified variable number of tandem repeats (VNTR)-based clusters within the early ancient sublineage of the Beijing genotype characterized by an unexpectedly high rate of extensive drug resistance (XDR). In the current study, next generation sequencing data were analysed to gain insight into genomic signatures underlying drug resistance of these strains. A total of 184 genomes of the Beijing early ancient sublineage from Russia (16), China (15), Japan (36), Korea (25), Vietnam (18), Thailand (73), and the USA (1) were used for phylogenetic analysis. The drug-resistant profile was deduced genotypically. The Russian isolates were distributed into two clusters and were all drug resistant, mainly pre-XDR and XDR. The largest of these clusters included only Russian isolates from remote locations in both Asian and European parts of the country. All its isolates had a quadruple drug resistance (to isoniazid, rifampin, ethambutol and streptomycin) due to the 6-mutation signature (KatG Ser315Thr, KatG Ile335Val, RpoB Ser450Leu, RpoC Asp485Asn, EmbB Gln497Arg, and RpsL Lys43Arg). In most samples, it was complemented with additional and different pncA, gyrA and rrs mutations leading to the pre-XDR/XDR genotype. Phylogenomic analysis indicates a distant origin of this Russian resistant cluster in the early 1970s but location and circumstances are yet to be clarified.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Beijing/epidemiología , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Genoma Bacteriano , Genotipo , Técnicas de Genotipaje , Humanos , Japón/epidemiología , Epidemiología Molecular , Mycobacterium tuberculosis/clasificación , Filogenia , Polimorfismo de Nucleótido Simple , República de Corea/epidemiología , Federación de Rusia/epidemiología , Tailandia/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Estados Unidos/epidemiología , Vietnam/epidemiología , Secuenciación Completa del Genoma
13.
Antibiotics (Basel) ; 10(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396320

RESUMEN

Mycobacterium tuberculosis is a highly studied pathogen due to public health importance. Despite this, problems like early drug resistance, diagnostics and treatment success prediction are still not fully resolved. Here, we analyze the incidence of point mutations widely used for drug resistance detection in laboratory practice and conduct comparative analysis of whole-genome sequence (WGS) for clinical M. tuberculosis strains collected from patients with pulmonary tuberculosis (PTB) and extra-pulmonary tuberculosis (XPTB) localization. A total of 72 pulmonary and 73 extrapulmonary microbiologically characterized M. tuberculosis isolates were collected from patients from 2007 to 2014 in Russia. Genomic DNA was used for WGS and obtained data allowed identifying major mutations known to be associated with drug resistance to first-line and second-line antituberculous drugs. In some cases previously described mutations were not identified. Using genome-based phylogenetic analysis we identified M. tuberculosis substrains associated with distinctions in the occurrence in PTB vs. XPTB cases. Phylogenetic analyses did reveal M. tuberculosis genetic substrains associated with TB localization. XPTB was associated with Beijing sublineages Central Asia (Beijing CAO), Central Asia Clade A (Beijing A) and 4.8 groups, while PTB localization was associated with group LAM (4.3). Further, the XPTB strain in some cases showed elevated drug resistance patterns relative to PTB isolates. HIV was significantly associated with the development of XPTB in the Beijing B0/W148 group and among unclustered Beijing isolates.

14.
Emerg Infect Dis ; 24(3): 579-583, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29460750

RESUMEN

Whole-genome analysis of Mycobacterium tuberculosis isolates collected in Russia (N = 71) from patients with tuberculous spondylitis supports a detailed characterization of pathogen strain distributions and drug resistance phenotype, plus distinguished occurrence and association of known resistance mutations. We identify known and novel genome determinants related to bacterial virulence, pathogenicity, and drug resistance.


Asunto(s)
Genoma Bacteriano , Mycobacterium tuberculosis/genética , Espondilitis/epidemiología , Espondilitis/microbiología , Tuberculosis/epidemiología , Tuberculosis/microbiología , Secuenciación Completa del Genoma , Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Geografía , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Filogenia , Federación de Rusia/epidemiología , Virulencia
16.
BMC Microbiol ; 15: 279, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26679959

RESUMEN

BACKGROUND: Russian Republic of Karelia is located at the Russian-Finnish border. It contains most of the historical Karelia land inhabited with autochthonous Karels and more recently migrated Russians. Although tuberculosis (TB) incidence in Karelia is decreasing, it remains high (45.8/100 000 in 2014) with the rate of multi-drug resistance (MDR) among newly diagnosed TB patients reaching 46.5 %. The study aimed to genetically characterize Mycobacterium tuberculosis isolates obtained at different time points from TB patients from Karelia to gain insight into the phylogeographic specificity of the circulating genotypes and to assess trends in evolution of drug resistant subpopulations. METHODS: The sample included 150 M. tuberculosis isolates: 78 isolated in 2013-2014 ("new" collection) and 72 isolated in 2006 ("old" collection). Drug susceptibility testing was done by the method of absolute concentrations. Spoligotyping was used to test genotype-specific markers of a Latin-American-Mediterranean (LAM) family and its sublineages as well as a Beijing B0/W148-cluster. RESULTS: The largest spoligotypes were SIT1 (Beijing family, n = 42) and SIT40 (T family, n = 5). Beijing family was the largest (n = 43) followed by T (n = 11), Ural (n = 10) and LAM (n = 8). Successful Russian clone, Beijing В0/W148, was identified in 15 (34.9 %) of 43 Beijing isolates; all В0/W148 isolates were drug-resistant. Seven of 8 LAM isolates belonged to the RD115/LAM-RUS branch, 1 - to the LAM RD174/RD-Rio sublineage. MDR was found in Beijing (32/43), Ural (3/10), and LAM (3/8). In contrast, all T isolates were pansusceptible. Comparison of drug resistant subgroups of the new and old collections showed an increasing prevalence of the B0/W148 clonal cluster, from 18.0 % (mainly polyresistant) in 2006 to 32.6 % in 2014 (mainly MDR and pre-XDR). The West-east increasing gradient is observed for the Ural genotype that may be defined a 'Russian' strain. In contrast, the spoligotype SIT40 of the T family appears to be a historical Karelian strain. CONCLUSIONS: Circulation of the MDR M. tuberculosis isolates of the Beijing genotype and its B0/W148 cluster continues to critically influence the current situation with the MDR-TB control in northwestern Russia including the Republic of Karelia. Revealed phylogeographic patterns of some genotypes reflect a complex demographic history of Karelia within the course of the 20(th) century.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Adulto , Anciano , Anciano de 80 o más Años , ADN Bacteriano/análisis , Farmacorresistencia Bacteriana Múltiple , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Filogeografía , Federación de Rusia/epidemiología , Adulto Joven
17.
Antimicrob Agents Chemother ; 59(4): 2349-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645851

RESUMEN

Extrapulmonary and, in particular, spinal tuberculosis (TB) constitutes a minor but significant part of the total TB incidence. In spite of this, almost no studies on the genetic diversity and drug resistance of Mycobacterium tuberculosis isolates from spinal TB patients have been published to date. Here, we report results of the first Russian and globally largest molecular study of M. tuberculosis isolates recovered from patients with tuberculous spondylitis (TBS). The majority of 107 isolates were assigned to the Beijing genotype (n = 80); the other main families were T (n = 11), Ural (n = 7), and LAM (n = 4). Multidrug resistance (MDR) was more frequently found among Beijing (90.5%) and, intriguingly, Ural (71.4%) isolates than other genotypes (5%; P < 0.001). The extremely drug-resistant (XDR) phenotype was exclusively found in the Beijing isolates (n = 7). A notable prevalence of the rpoB531 and katG315 mutations in Beijing strains that were similarly high in both TBS (this study) and published pulmonary TB (PTB) samples from Russia shows that TBS and PTB Beijing strains follow the same paradigm of acquisition of rifampin (RIF) and isoniazid (INH) resistance. The 24-locus mycobacterial interspersed repetitive unit-variable-number tandem-repeat (MIRU-VNTR) subtyping of 80 Beijing isolates further discriminated them into 24 types (Hunter Gaston index [HGI] = 0.83); types 100-32 and 94-32 represented the largest groups. A genotype of Russian successful clone B0/W148 was identified in 30 of 80 Beijing isolates. In conclusion, this study highlighted a crucial impact of the Beijing genotype and the especially prominent role of its MDR-associated successful clone B0/W148 cluster in the development of spinal MDR-TB in Russian patients.


Asunto(s)
Mycobacterium tuberculosis/efectos de los fármacos , Espondilitis/microbiología , Tuberculosis de la Columna Vertebral/microbiología , Adolescente , Adulto , Anciano , Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Femenino , Genotipo , Humanos , Isoniazida/farmacología , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Repeticiones de Minisatélite , Mutación/genética , Mycobacterium tuberculosis/genética , Prevalencia , Rifampin/farmacología , Federación de Rusia/epidemiología , Espondilitis/epidemiología , Tuberculosis de la Columna Vertebral/epidemiología , Tuberculosis de la Columna Vertebral/genética , Adulto Joven
18.
Alcohol ; 42(8): 675-82, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19038698

RESUMEN

The effects of chronic alcohol consumption on the bowel flora and the potential therapeutic role of probiotics in alcohol-induced liver injury have not previously been evaluated. In this study, 66 adult Russian males admitted to a psychiatric hospital with a diagnosis of alcoholic psychosis were enrolled in a prospective, randomized, clinical trial to study the effects of alcohol and probiotics on the bowel flora and alcohol-induced liver injury. Patients were randomized to receive 5 days of Bifidobacterium bifidum and Lactobacillus plantarum 8PA3 versus standard therapy alone (abstinence plus vitamins). Stool cultures and liver enzymes were performed at baseline and again after therapy. Results were compared between groups and with 24 healthy, matched controls who did not consume alcohol. Compared to healthy controls, alcoholic patients had significantly reduced numbers of bifidobacteria (6.3 vs. 7.5 log colony-forming unit [CFU]/g), lactobacilli (3.15 vs. 4.59 log CFU/g), and enterococci (4.43 vs. 5.5 log CFU/g). The mean baseline alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transpeptidase (GGT) activities were significantly elevated in the alcoholic group compared to the healthy control group (AST: 104.1 vs. 29.15 U/L; ALT: 50.49 vs. 22.96 U/L; GGT 161.5 vs. 51.88 U/L), indicating that these patients did have mild alcohol-induced liver injury. After 5 days of probiotic therapy, alcoholic patients had significantly increased numbers of both bifidobacteria (7.9 vs. 6.81 log CFU/g) and lactobacilli (4.2 vs. 3.2 log CFU/g) compared to the standard therapy arm. Despite similar values at study initiation, patients treated with probiotics had significantly lower AST and ALT activity at the end of treatment than those treated with standard therapy alone (AST: 54.67 vs. 76.43 U/L; ALT 36.69 vs. 51.26 U/L). In a subgroup of 26 subjects with well-characterized mild alcoholic hepatitis (defined as AST and ALT greater than 30 U/L with AST-to-ALT ratio greater than one), probiotic therapy was associated with a significant end of treatment reduction in ALT, AST, GGT, lactate dehydrogenase, and total bilirubin. In this subgroup, there was a significant end of treatment mean ALT reduction in the probiotic arm versus the standard therapy arm. In conclusion, patients with alcohol-induced liver injury have altered bowel flora compared to healthy controls. Short-term oral supplementation with B. bifidum and L. plantarum 8PA3 was associated with restoration of the bowel flora and greater improvement in alcohol-induced liver injury than standard therapy alone.


Asunto(s)
Intestinos/microbiología , Hepatopatías Alcohólicas/tratamiento farmacológico , Hígado/enzimología , Probióticos/uso terapéutico , Adulto , Alanina Transaminasa/sangre , Aspartato Aminotransferasas/sangre , Humanos , L-Lactato Deshidrogenasa/sangre , Hepatopatías Alcohólicas/enzimología , Hepatopatías Alcohólicas/microbiología , Masculino , Proyectos Piloto , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...