Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Proc Biol Sci ; 290(2000): 20230877, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37312554

RESUMEN

Habitat isolation and disturbance are important regulators of biodiversity, yet it remains unclear how these environmental features drive differences in parasite diversity between ecosystems. We test whether the biological communities in an isolated, frequently disturbed marine ecosystem (deep-sea hydrothermal vents) have reduced parasite richness and relatively fewer parasite species with indirect life cycles (ILCs) compared to ecosystems that are less isolated and less disturbed. We surveyed the parasite fauna of the biological community at the 9°50'N hydrothermal vent field on the East Pacific Rise and compared it to similar datasets from a well-connected and moderately disturbed ecosystem (kelp forest) and an isolated and undisturbed ecosystem (atoll sandflat). Parasite richness within host species did not differ significantly between ecosystems, yet total parasite richness in the vent community was much lower due to the low number of predatory fish species. Contrary to expectation, the proportion of ILC parasite species was not lower at vents due to a high richness of trematodes, while other ILC parasite taxa were scarce (nematodes) or absent (cestodes). These results demonstrate the success of diverse parasite taxa in an extreme environment and reinforce the importance of host diversity and food web complexity in governing parasite diversity.


Asunto(s)
Respiraderos Hidrotermales , Parásitos , Animales , Ecosistema , Biodiversidad , Bosques
3.
Ecology ; 102(8): e03418, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34046895

RESUMEN

Investigation of communities in extreme environments with unique conditions has the potential to broaden or challenge existing theory as to how biological communities assemble and change through succession. Deep-sea hydrothermal vent ecosystems have strong, parallel gradients of nutrients and environmental stress, and present unusual conditions in early succession, in that both nutrient availability and stressors are high. We analyzed the succession of the invertebrate community at 9°50' N on the East Pacific Rise for 11 yr following an eruption in 2006 in order to test successional theories developed in other ecosystems. We focused on functional traits including body size, external protection, provision of habitat (foundation species), and trophic mode to understand how the unique nutritional and stress conditions influence community composition. In contrast to established theory, large, fast-growing, structure-forming organisms colonized rapidly at vents, while small, asexually reproducing organisms were not abundant until later in succession. Species in early succession had high external protection, as expected in the harsh thermal and chemical conditions after the eruption. Changes in traits related to feeding ecology and dispersal potential over succession agreed with expectations from other ecosystems. We also tracked functional diversity metrics over time to see how they compared to species diversity. While species diversity peaked at 8 yr post-eruption, functional diversity was continuing to increase at 11 yr. Our results indicate that deep-sea hydrothermal vents have distinct successional dynamics due to the high stress and high nutrient conditions in early succession. These findings highlight the importance of extending theory to new systems and considering function to allow comparison between ecosystems with different species and environmental conditions.


Asunto(s)
Respiraderos Hidrotermales , Animales , Biodiversidad , Ecosistema , Invertebrados
4.
Harmful Algae ; 103: 101998, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33980438

RESUMEN

Anchored mesh screens have been suggested as a standardized approach to monitor the cell abundances of epiphytic dinoflagellates in benthic habitats, including toxigenic members of the Gambierdiscus genus responsible for ciguatera poisoning (CP). Here we deployed screens for 24h at eight sites in the Florida Keys and St. Thomas (US Virgin Islands) to evaluate their performance relative to the traditional method of assessing Gambierdiscus abundance in which cell counts are normalized to wet weight of host algae. The 30-month study (April 2013 - August 2015) involved monthly sampling at sites where screens were suspended at near-bottom locations for a 24h period and retrieved, with concurrent collections of macrophytes; including Halimeda, Laurencia, and Thalassia in the Florida Keys, and Dictyota in both regions. Gambierdiscus cells were identified and enumerated in the screen and macrophyte samples, and several regression techniques were evaluated (linear regression using untransformed and log-transformed data; negative binomial distribution (NBD) regression) to determine how well the screen-derived data could estimate algal cell concentrations on the host algae. In all cases, the NBD models performed the best based on Akaike Information Criteria values, although 38% of the regressions were not statistically-significant, including all of the St. Thomas sites. The r2 values were all < 0.75 and averaged 0.36, indicating relatively poor fit of the screen data. False negative results (regression models underestimating actual cell abundances) were common occurrences, ranging from 5 to 74% of the scenarios tested. In summary, these results indicate that 24h screen deployments do not appear to be consistent in all situations. Caution is therefore needed when considering 24h screens as a standardized monitoring approach for quantifying Gambierdiscus population dynamics across geography and ecosystems. Furthermore, neutral (artificial) substrates may not adequately capture either the host preference or palatability that likely influence the initial vector of toxin incorporation in the food web via herbivory on these macrophytes.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados , Ecosistema , Florida , Islas Virgenes de los Estados Unidos
5.
Harmful Algae ; 102: 101975, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33875183

RESUMEN

Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990-2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida - Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921-2001 but have appeared in more than 15  U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50  U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.


Asunto(s)
Ecosistema , Floraciones de Algas Nocivas , Animales , Florida , Golfo de México , Océanos y Mares , Estados Unidos , Virginia
6.
Limnol Oceanogr ; 65(5): 1085-1102, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32612307

RESUMEN

Synechococcus is a widespread and important marine primary producer. Time series provide critical information for identifying and understanding the factors that determine abundance patterns. Here, we present the results of analysis of a 16-yr hourly time series of Synechococcus at the Martha's Vineyard Coastal Observatory, obtained with an automated, in situ flow cytometer. We focus on understanding seasonal abundance patterns by examining relationships between cell division rate, loss rate, cellular properties (e.g., cell volume, phycoerythrin fluorescence), and environmental variables (e.g., temperature, light). We find that the drivers of cell division vary with season; cells are temperature-limited in winter and spring, but light-limited in the fall. Losses to the population also vary with season. Our results lead to testable hypotheses about Synechococcus ecophysiology and a working framework for understanding the seasonal controls of Synechococcus cell abundance in a temperate coastal system.

7.
Proc Natl Acad Sci U S A ; 117(22): 12215-12221, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32414929

RESUMEN

Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region's primary productivity than their standing stocks suggest.


Asunto(s)
Biodiversidad , Conducta Alimentaria , Fitoplancton/fisiología , Synechococcus/crecimiento & desarrollo , Zooplancton/fisiología , Animales , Cadena Alimentaria , Modelos Estadísticos , Dinámica Poblacional
8.
Proc Natl Acad Sci U S A ; 115(8): 1754-1759, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29378969

RESUMEN

Ocean acidification (OA) is considered an important threat to coral reef ecosystems, because it reduces the availability of carbonate ions that reef-building corals need to produce their skeletons. However, while theory predicts that coral calcification rates decline as carbonate ion concentrations decrease, this prediction is not consistently borne out in laboratory manipulation experiments or in studies of corals inhabiting naturally low-pH reefs today. The skeletal growth of corals consists of two distinct processes: extension (upward growth) and densification (lateral thickening). Here, we show that skeletal density is directly sensitive to changes in seawater carbonate ion concentration and thus, to OA, whereas extension is not. We present a numerical model of Porites skeletal growth that links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validate the model using existing coral skeletal datasets from six Porites species collected across five reef sites and use this framework to project the impact of 21st century OA on Porites skeletal density across the global tropics. Our model predicts that OA alone will drive up to 20.3 ± 5.4% decline in the skeletal density of reef-building Porites corals.

9.
Limnol Oceanogr ; 62(6): 2829-2849, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29263558

RESUMEN

New resting cyst production is crucial for the survival of many microbial eukaryotes including phytoplankton that cause harmful algal blooms. Production in situ has previously been estimated through sediment trap deployments, but here was instead assessed through estimation of the total number of planktonic cells and new resting cysts produced by a localized, inshore bloom of Alexandrium catenella, a dinoflagellate that is a globally important cause of paralytic shellfish poisoning. Our approach utilizes high frequency, automated water monitoring, weekly observation of new cyst production, and pre- and post-bloom spatial surveys of total resting cyst abundance. Through this approach, new cyst recruitment within the study area was shown to account for at least 10.9% ± 2.6% (SE) of the bloom's decline, ∼ 5× greater than reported from comparable, sediment trap based studies. The observed distribution and timing of new cyst recruitment indicate that: (1) planozygotes, the immediate precursor to cysts in the life cycle, migrate nearer to the water surface than other planktonic stages and (2) encystment occurs after planozygote settlement on bottom sediments. Near surface localization by planozygotes explains the ephemerality of red surface water discoloration by A. catenella blooms, and also enhances the dispersal of new cysts. Following settlement, bioturbation and perhaps active swimming promote sediment infiltration by planozygotes, reducing the extent of cyst redistribution between blooms. The concerted nature of bloom sexual induction, especially in the context of an observed upper limit to A. catenella bloom intensities and heightened susceptibility of planozygotes to the parasite Amoebophrya, is also discussed.

10.
PeerJ ; 5: e4025, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29158973

RESUMEN

The IUCN Red List of Threatened Species is often advocated as a tool to assist decision-making in conservation investment and research focus. It is frequently suggested that research efforts should prioritize species in higher threat categories and those that are Data Deficient (DD). We assessed the linkage between IUCN listing and research effort in DD and Critically Endangered (CR) species, two groups generally advocated as research priorities. The analysis of the change in the research output following species classification indicated a listing effect in DD species, while such effect was observed in only a minority of CR species groups. DD species, while chronically understudied, seem to be recognized as research priorities, while research effort for endangered species appears to be driven by various factors other than the IUCN listing. Optimized conservation research focus would require international science planning efforts, harmonized through international mechanisms and promoted by financial and other incentives.

11.
Philos Trans R Soc Lond B Biol Sci ; 372(1723)2017 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-28483867

RESUMEN

There is growing interest in identifying the impacts of extreme climate events on natural systems. Two principles of such detection are that it should be based on a scientific understanding of the processes by which climate affects the system of interest and that non-climate factors that also affect the system should be controlled for. Using a simple temperature-dependent predator-prey model, this paper illustrates the importance of these principles in the context of establishing a link between temperature and population extremes. The results suggest that a naive approach based only on the co-occurrence of temperature and population extremes may fail. In the second part of the paper, some reasons for focusing attention on the ecological impacts of extreme climate events are briefly reviewed. It is suggested that, while extreme ecological events may be important for society, this does not imply that an analysis aimed at connecting them to extreme climate events should necessarily be based on extreme events themselves.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Ecología/métodos , Cadena Alimentaria , Modelos Biológicos , Plantas , Dinámica Poblacional , Temperatura
12.
Conserv Biol ; 31(5): 1192-1195, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28233409

RESUMEN

The Passenger Pigeon (Ectopistes migratorius) was a social breeder, and it has been suggested that the species experienced functional extinction, defined as a total reproductive failure, prior to its actual extinction in the early years of the 20th century. We applied a novel randomization test based on the relative times of the most recent egg- and skin-specimen sightings (i.e., recorded date of specimen collection) to test for functional extinction. For a total of 6 eggs and 27 skins, the observed significance level was 0.38, which indicated that the species did not become functionally extinct. Thus, proposals to reverse its rapid decline in the late 19th century could have been successful.


Asunto(s)
Columbidae , Extinción Biológica , Animales , Conservación de los Recursos Naturales , Reproducción
13.
Science ; 354(6310): 326-329, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27846565

RESUMEN

Climate affects the timing and magnitude of phytoplankton blooms that fuel marine food webs and influence global biogeochemical cycles. Changes in bloom timing have been detected in some cases, but the underlying mechanisms remain elusive, contributing to uncertainty in long-term predictions of climate change impacts. Here we describe a 13-year hourly time series from the New England shelf of data on the coastal phytoplankter Synechococcus, during which the timing of its spring bloom varied by 4 weeks. We show that multiyear trends are due to temperature-induced changes in cell division rate, with earlier blooms driven by warmer spring water temperatures. Synechococcus loss rates shift in tandem with division rates, suggesting a balance between growth and loss that has persisted despite phenological shifts and environmental change.


Asunto(s)
Cambio Climático , Eutrofización , Fitoplancton/crecimiento & desarrollo , Synechococcus/crecimiento & desarrollo , Cadena Alimentaria , New England , Estaciones del Año , Temperatura
14.
Biol Lett ; 12(6)2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27277952

RESUMEN

Bayesian inference about the extinction of a species based on a record of its sightings requires the specification of a prior distribution for extinction time. Here, I critically review some specifications in the context of a specific model of the sighting record. The practical implication of the choice of prior distribution is illustrated through an application to the sighting record of the Caribbean monk seal.


Asunto(s)
Extinción Biológica , Modelos Estadísticos , Phocidae , Animales , Teorema de Bayes
16.
Proc Natl Acad Sci U S A ; 113(9): E1132, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884203
17.
Science ; 349(6255): 1444-5, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26404810
19.
Proc Natl Acad Sci U S A ; 111(27): 9852-7, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958866

RESUMEN

Phytoplankton account for roughly half of global primary production; it is vital that we understand the processes that control their abundance. A key process is cell division. We have, however, been unable to estimate division rate in natural populations at the appropriate timescale (hours to days) for extended periods of time (months to years). For phytoplankton, the diel change in cell size distribution is related to division rate, which offers an avenue to obtain estimates from in situ observations. We show that a matrix population model, fit to hourly cell size distributions, accurately estimates division rates of both cultured and natural populations of Synechococcus. Application of the model to Synechococcus at the Martha's Vineyard Coastal Observatory provides an unprecedented view that reveals a distinct seasonality in division rates. This information allows us to separate the effects of growth and loss quantitatively over an entire seasonal cycle. We find that division and loss processes are tightly coupled throughout the year. The large seasonal changes in cell abundance are the result of periods of time (weeks to months) when there are small systematic differences that favor either net growth or loss. We also find that temperature plays a critical role in limiting division rate during the annual spring bloom. This approach opens a path to quantify the role of Synechococcus in ecological and biogeochemical processes in natural systems.


Asunto(s)
Tamaño de la Célula , Fitoplancton/crecimiento & desarrollo , Estaciones del Año , Synechococcus/crecimiento & desarrollo , Modelos Biológicos , Océanos y Mares , Crecimiento Demográfico
20.
Deep Sea Res 2 Top Stud Oceanogr ; 103: 264-276, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24948849

RESUMEN

A major goal in harmful algal bloom (HAB) research has been to identify mechanisms underlying interannual variability in bloom magnitude and impact. Here the focus is on variability in Alexandrium fundyense blooms and paralytic shellfish poisoning (PSP) toxicity in Maine, USA, over 34 years (1978 - 2011). The Maine coastline was divided into two regions -eastern and western Maine, and within those two regions, three measures of PSP toxicity (the percent of stations showing detectable toxicity over the year, the cumulative amount of toxicity per station measured in all shellfish (mussel) samples during that year, and the duration of measurable toxicity) were examined for each year in the time series. These metrics were combined into a simple HAB Index that provides a single measure of annual toxin severity across each region. The three toxin metrics, as well as the HAB Index that integrates them, reveal significant variability in overall toxicity between individual years as well as long-term, decadal patterns or regimes. Based on different conceptual models of the system, we considered three trend formulations to characterize the long-term patterns in the Index - a three-phase (mean-shift) model, a linear two-phase model, and a pulse-decline model. The first represents a "regime shift" or multiple equilibria formulation as might occur with alternating periods of sustained high and low cyst abundance or favorable and unfavorable growth conditions, the second depicts a scenario of more gradual transitions in cyst abundance or growth conditions of vegetative cells, and the third characterizes a "sawtooth" pattern in which upward shifts in toxicity are associated with major cyst recruitment events, followed by a gradual but continuous decline until the next pulse. The fitted models were compared using both residual sum of squares and Akaike's Information Criterion. There were some differences between model fits, but none consistently gave a better fit than the others. This statistical underpinning can guide efforts to identify physical and/or biological mechanisms underlying the patterns revealed by the HAB Index. Although A. fundyense cyst survey data (limited to 9 years) do not span the entire interval of the shellfish toxicity records, this analysis leads us to hypothesize that major changes in the abundance of A. fundyense cysts may be a primary factor contributing to the decadal trends in shellfish toxicity in this region. The HAB Index approach taken here is simple but represents a novel and potentially useful tool for resource managers in many areas of the world subject to toxic HABs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...