Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurooncol ; 168(1): 125-138, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38563850

RESUMEN

PURPOSE: Triple-negative breast cancer (TNBC) often metastasizes to the central nervous system (CNS) and has the highest propensity among breast cancer subtypes to develop leptomeningeal disease (LMD). LMD is a spread of cancer into leptomeningeal space that speeds up the disease progression and severely aggravates the prognosis. LMD has limited treatment options. We sought to test whether the common anti-helminthic drug mebendazole (MBZ) may be effective against murine TNBC LMD. METHODS: A small-molecule screen involving TNBC cell lines identified benzimidazoles as potential therapeutic agents for further study. In vitro migration assays were used to evaluate cell migration capacity and the effect of MBZ. For in vivo testing, CNS metastasis was introduced into BALB/c athymic nude mice through internal carotid artery injections of brain-tropic MDA-MB-231-BR or MCF7-BR cells. Tumor growth and spread was monitored by bioluminescence imaging and immunohistochemistry. MBZ was given orally at 50 and 100 mg/kg doses. MBZ bioavailability was assayed by mass spectrometry. RESULTS: Bioinformatic analysis and migration assays revealed higher migratory capacity of TNBC compared to other breast cancer subtypes. MBZ effectively slowed down migration of TNBC cell line MDA-MB-231 and its brain tropic derivative MDA-MB-231-BR. In animal studies, MBZ reduced leptomeningeal spread, and extended survival in brain metastasis model produced by MDA-MB-231-BR cells. MBZ did not have an effect in the non-migratory MCF7-BR model. CONCLUSIONS: We demonstrated that MBZ is a safe and effective oral agent in an animal model of TNBC CNS metastasis. Our findings are concordant with previous efforts involving MBZ and CNS pathology and support the drug's potential utility to slow down leptomeningeal spread.


Asunto(s)
Movimiento Celular , Reposicionamiento de Medicamentos , Mebendazol , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Humanos , Femenino , Mebendazol/farmacología , Mebendazol/uso terapéutico , Ratones , Movimiento Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/secundario , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos
2.
Res Sq ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38405839

RESUMEN

Purpose: Triple-negative breast cancer (TNBC) is an aggressive subtype that often metastasizes to the brain. Leptomeningeal disease (LMD), a devastating brain metastasis common in TNBC, has limited treatment options. We sought to test whether the common anti-helminthic drug mebendazole (MBZ) may be effective against murine TNBC LMD. Methods: A small-molecule screen involving TNBC cell lines identified benzimidazoles as potential therapeutic agents for further study. In vitro migration assays were used to evaluate cell migration capacity and the effect of MBZ. For in vivo testing, LMD was introduced into BALB/c athymic nude mice through internal carotid artery injections of brain-tropic MDA-MB-231-BR or MCF7-BR cells. Tumor growth and spread was monitored by bioluminescence imaging. MBZ was given orally at 50 and 100 mg/kg doses. MBZ bioavailability was assayed by mass spectrometry. Results: Bioinformatic analysis and migration assays revealed higher migratory capacity of TNBC compared to other breast cancer subtypes. MBZ effectively slowed down migration of TNBC cell line MDA-MB-231 and its brain tropic derivative MDA-MB-231-BR. In animal studies, MBZ reduced tumor growth and extended survival in the LMD model produced by MDA-MB-231-BR cells. MBZ did not have an effect in the non-migratory MCF7-BR model. Conclusions: We demonstrated that MBZ is a safe and effective oral agent in an animal model of TNBC LMD. Our findings are concordant with previous efforts involving MBZ and central nervous system pathology and further support the drug's potential utility as an alternative therapeutic for TNBC LMD.

3.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37581931

RESUMEN

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family of receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, ErbB2, and ErbB4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, proinflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production, and disruption of blood-brain barrier integrity in microfluidics-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof of principle for a repurposed, ErbB-targeted approach to combat emerging viruses.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Animales , Humanos , Ratones , Antivirales/farmacología , Citocinas , Inflamación/tratamiento farmacológico , Lapatinib/farmacología , SARS-CoV-2
4.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34159337

RESUMEN

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, 2 and 4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, pro-inflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production and disruption of the blood-brain barrier integrity in microfluidic-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof-of-principle for a repurposed, ErbB-targeted approach to combat emerging viruses.

5.
Nat Commun ; 13(1): 6796, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357388

RESUMEN

When the protein or calcium homeostasis of the endoplasmic reticulum (ER) is adversely altered, cells experience ER stress that leads to various diseases including neurodegeneration. Genetic deletion of an ER stress downstream effector, CHOP, significantly protects neuron somata and axons. Here we report that three tricyclic compounds identified through a small-scale high throughput screening using a CHOP promoter-driven luciferase cell-based assay, effectively inhibit ER stress by antagonizing their common target, histamine receptor H1 (HRH1). We further demonstrated that systemic administration of one of these compounds, maprotiline, or CRISPR-mediated retinal ganglion cell (RGC)-specific HRH1 inhibition, delivers considerable neuroprotection of both RGC somata and axons and preservation of visual function in two mouse optic neuropathy models. Finally, we determine that maprotiline restores ER homeostasis by inhibiting HRH1-mediated Ca2+ release from ER. In this work we establish maprotiline as a candidate neuroprotectant and HRH1 as a potential therapeutic target for glaucoma.


Asunto(s)
Maprotilina , Células Ganglionares de la Retina , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Maprotilina/metabolismo , Maprotilina/farmacología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Modelos Animales de Enfermedad , Homeostasis , Receptores Histamínicos/metabolismo
6.
Cell Rep ; 41(4): 111505, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288715

RESUMEN

Gene-based therapeutic strategies to lower ataxin-2 levels are emerging for the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). Additional strategies to lower levels of ataxin-2 could be beneficial. Here, we perform a genome-wide arrayed small interfering RNA (siRNA) screen in human cells and identify RTN4R, the gene encoding the RTN4/NoGo-Receptor, as a potent modifier of ataxin-2 levels. RTN4R knockdown, or treatment with a peptide inhibitor, is sufficient to lower ataxin-2 protein levels in mouse and human neurons in vitro, and Rtn4r knockout mice have reduced ataxin-2 levels in vivo. We provide evidence that ataxin-2 shares a role with the RTN4/NoGo-Receptor in limiting axonal regeneration. Reduction of either protein increases axonal regrowth following axotomy. These data define the RTN4/NoGo-Receptor as a novel therapeutic target for ALS and SCA2 and implicate the targeting of ataxin-2 as a potential treatment following nerve injury.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ataxias Espinocerebelosas , Animales , Ratones , Humanos , Ataxina-2/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , ARN Interferente Pequeño , Receptores Nogo/metabolismo , Ataxias Espinocerebelosas/genética , Ratones Noqueados , Péptidos/metabolismo , Proteínas Nogo/genética , Proteínas Nogo/metabolismo
7.
Oncogene ; 39(9): 2029, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31659253

RESUMEN

The original version of this Article contained an error in the spelling of the author David Solow-Cordero, which was incorrectly given as David Solow-Codero. This has now been corrected in both the PDF and HTML versions of the Article.

8.
Proc Natl Acad Sci U S A ; 116(36): 18009-18014, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427509

RESUMEN

Citrus greening disease, also known as huanglongbing (HLB), is the most devastating disease of Citrus worldwide. This incurable disease is caused primarily by the bacterium Candidatus Liberibacter asiaticus and spread by feeding of the Asian Citrus Psyllid, Diaphorina citriCa L. asiaticus cannot be cultured; its growth is restricted to citrus phloem and the psyllid insect. Management of infected trees includes use of broad-spectrum antibiotics, which have disadvantages. Recent work has sought to identify small molecules that inhibit Ca L. asiaticus transcription regulators, based on a premise that at least some regulators control expression of genes necessary for virulence. We describe a synthetic, high-throughput screening system to identify compounds that inhibit activity of Ca L. asiaticus transcription activators LdtR, RpoH, and VisNR. Our system uses the closely related model bacterium, Sinorhizobium meliloti, as a heterologous host for expression of a Ca L. asiaticus transcription activator, the activity of which is detected through expression of an enhanced green fluorescent protein (EGFP) gene fused to a target promoter. We used this system to screen more than 120,000 compounds for compounds that inhibited regulator activity, but not growth. Our screen identified several dozen compounds that inhibit regulator activity in our assay. This work shows that, in addition to providing a means of characterizing Ca L. asiaticus regulators, an S. meliloti host can be used for preliminary identification of candidate inhibitory molecules.


Asunto(s)
Antibacterianos , Proteínas Bacterianas/antagonistas & inhibidores , Rhizobiaceae/metabolismo , Transactivadores/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrus/microbiología , Evaluación Preclínica de Medicamentos , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genética , Transactivadores/genética , Transactivadores/metabolismo
9.
Am J Respir Crit Care Med ; 199(1): 83-98, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30107138

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by progressive narrowing of pulmonary arteries, resulting in right heart failure and death. BMPR2 (bone morphogenetic protein receptor type 2) mutations account for most familial PAH forms whereas reduced BMPR2 is present in many idiopathic PAH forms, suggesting dysfunctional BMPR2 signaling to be a key feature of PAH. Modulating BMPR2 signaling is therapeutically promising, yet how BMPR2 is downregulated in PAH is unclear. OBJECTIVES: We intended to identify and pharmaceutically target BMPR2 modifier genes to improve PAH. METHODS: We combined siRNA high-throughput screening of >20,000 genes with a multicohort analysis of publicly available PAH RNA expression data to identify clinically relevant BMPR2 modifiers. After confirming gene dysregulation in tissue from patients with PAH, we determined the functional roles of BMPR2 modifiers in vitro and tested the repurposed drug enzastaurin for its propensity to improve experimental pulmonary hypertension (PH). MEASUREMENTS AND MAIN RESULTS: We discovered FHIT (fragile histidine triad) as a novel BMPR2 modifier. BMPR2 and FHIT expression were reduced in patients with PAH. FHIT reductions were associated with endothelial and smooth muscle cell dysfunction, rescued by enzastaurin through a dual mechanism: upregulation of FHIT as well as miR17-5 repression. Fhit-/- mice had exaggerated hypoxic PH and failed to recover in normoxia. Enzastaurin reversed PH in the Sugen5416/hypoxia/normoxia rat model, by improving right ventricular systolic pressure, right ventricular hypertrophy, cardiac fibrosis, and vascular remodeling. CONCLUSIONS: This study highlights the importance of the novel BMPR2 modifier FHIT in PH and the clinical value of the repurposed drug enzastaurin as a potential novel therapeutic strategy to improve PAH.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Hipertensión Pulmonar Primaria Familiar/genética , Genes Modificadores/genética , Proteínas de Neoplasias/genética , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar/metabolismo , Femenino , Humanos , Indoles/farmacología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
10.
J Clin Invest ; 128(12): 5307-5321, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30371505

RESUMEN

After the initial responsiveness of triple-negative breast cancers (TNBCs) to chemotherapy, they often recur as chemotherapy-resistant tumors, and this has been associated with upregulated homology-directed repair (HDR). Thus, inhibitors of HDR could be a useful adjunct to chemotherapy treatment of these cancers. We performed a high-throughput chemical screen for inhibitors of HDR from which we obtained a number of hits that disrupted microtubule dynamics. We postulated that high levels of the target molecules of our screen in tumors would correlate with poor chemotherapy response. We found that inhibition or knockdown of dynamin 2 (DNM2), known for its role in endocytic cell trafficking and microtubule dynamics, impaired HDR and improved response to chemotherapy of cells and of tumors in mice. In a retrospective analysis, levels of DNM2 at the time of treatment strongly predicted chemotherapy outcome for estrogen receptor-negative and especially for TNBC patients. We propose that DNM2-associated DNA repair enzyme trafficking is important for HDR efficiency and is a powerful predictor of sensitivity to breast cancer chemotherapy and an important target for therapy.


Asunto(s)
Antineoplásicos/farmacología , Dinaminas/metabolismo , Reparación del ADN por Recombinación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/enzimología , Animales , Células CHO , Cricetulus , Dinamina II , Dinaminas/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Artículo en Inglés | MEDLINE | ID: mdl-30175074

RESUMEN

Neglected tropical diseases, especially those caused by parasites, are significantly underserved by current drug development efforts, mostly due to the high costs and low economic returns. One method for lowering the costs of drug discovery and development for these diseases is to repurpose drugs developed for other indications. Here, we present the results of a screen of five repurposed drug libraries to identify potential new lead compounds to treat amebiasis, a disease that affects tens of millions of people and causes ~100,000 deaths annually. E. histolytica, the causative agent of amebiasis, has two major life cycle stages, the trophozoite and the cyst. The current primary treatment for amebiasis, nitroimidazole compounds, do not eliminate parasites from the colonic lumen, necessitating a multi-drug treatment regimen. We aimed to address this problem by screening against both life stages, with the aim of identifying a single drug that targets both. We successfully identified eleven compounds with activity against both cysts and trophozoites, as well as multiple compounds that killed trophozoites with improved efficacy over existing drugs. Two lead compounds (anisomycin and prodigiosin) were further characterized for activity against metronidazole (MNZ) resistant parasites and mature cysts. Anisomycin and prodigiosin were both able to kill MNZ resistant parasites while prodigiosin and its analog obatoclax were active against mature cysts. This work confirms the feasibility of identifying drugs that target both Entamoeba trophozoites and cysts, and is an important step toward developing improved treatment regimens for Entamoeba infection.


Asunto(s)
Antiprotozoarios/farmacología , Evaluación Preclínica de Medicamentos , Resistencia a Medicamentos , Entamoeba/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos , Metronidazol/farmacología , Anisomicina/farmacología , Supervivencia Celular/efectos de los fármacos , Reposicionamiento de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Prodigiosina/farmacología , Esporas Protozoarias/efectos de los fármacos , Trofozoítos/efectos de los fármacos
12.
Mol Cancer Res ; 16(5): 745-753, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29440447

RESUMEN

Activation of the unfolded protein response (UPR) signaling pathways is linked to multiple human diseases, including cancer. The inositol-requiring kinase 1α (IRE1α)-X-box binding protein 1 (XBP1) pathway is the most evolutionarily conserved of the three major signaling branches of the UPR. Here, we performed a genome-wide siRNA screen to obtain a systematic assessment of genes integrated in the IRE1α-XBP1 axis. We monitored the expression of an XBP1-luciferase chimeric protein in which luciferase was fused in-frame with the spliced (active) form of XBP1. Using cells expressing this reporter construct, we identified 162 genes for which siRNA inhibition resulted in alteration in XBP1 splicing. These genes express diverse types of proteins modulating a wide range of cellular processes. Pathway analysis identified a set of genes implicated in the pathogenesis of breast cancer. Several genes, including BCL10, GCLM, and IGF1R, correlated with worse relapse-free survival (RFS) in an analysis of patients with triple-negative breast cancer (TNBC). However, in this cohort of 1,908 patients, only high GCLM expression correlated with worse RFS in both TNBC and non-TNBC patients. Altogether, our study revealed unidentified roles of novel pathways regulating the UPR, and these findings may serve as a paradigm for exploring novel therapeutic opportunities based on modulating the UPR.Implications: Genome-wide RNAi screen identifies novel genes/pathways that modulate IRE1α-XBP1 signaling in human tumor cells and leads to the development of improved therapeutic approaches targeting the UPR.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/5/745/F1.large.jpg Mol Cancer Res; 16(5); 745-53. ©2018 AACR.


Asunto(s)
Genoma Humano/genética , Proteína 1 de Unión a la X-Box/genética , Humanos , Interferencia de ARN , Transfección
14.
Mol Cancer Ther ; 15(9): 2055-65, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27307600

RESUMEN

Using a luciferase reporter-based high-throughput chemical library screen and topological data analysis, we identified N-acridine-9-yl-N',N'-dimethylpropane-1,3-diamine (DAPA) as an inhibitor of the inositol requiring kinase 1α (IRE1α)-X-box binding protein-1 (XBP1) pathway of the unfolded protein response. We designed a collection of analogues based on the structure of DAPA to explore structure-activity relationships and identified N(9)-(3-(dimethylamino)propyl)-N(3),N(3),N(6),N(6)-tetramethylacridine-3,6,9-triamine (3,6-DMAD), with 3,6-dimethylamino substitution on the chromophore, as a potent inhibitor. 3,6-DMAD inhibited both IRE1α oligomerization and in vitro endoribonuclease (RNase) activity, whereas the other analogues only blocked IRE1α oligomerization. Consistent with the inhibition of IRE1α-mediated XBP1 splicing, which is critical for multiple myeloma cell survival, these analogues were cytotoxic to multiple myeloma cell lines. Furthermore, 3,6-DMAD inhibited XBP1 splicing in vivo and the growth of multiple myeloma tumor xenografts. Our study not only confirmed the utilization of topological data analysis in drug discovery but also identified a class of compounds with a unique mechanism of action as potent IRE1α-XBP1 inhibitors in the treatment of multiple myeloma. Mol Cancer Ther; 15(9); 2055-65. ©2016 AACR.


Asunto(s)
Acridinas/farmacología , Antineoplásicos/farmacología , Endorribonucleasas/metabolismo , Mieloma Múltiple/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Análisis por Conglomerados , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Endorribonucleasas/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Mieloma Múltiple/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína 1 de Unión a la X-Box/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Drug Des Devel Ther ; 10: 1307-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27103785

RESUMEN

Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%-20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved) that were screened are Library of Pharmacologically Active Compounds (LOPAC1280), the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150 unique compounds, which inhibited >90% of B. burgdorferi growth at a concentration of <25 µM. These 150 unique compounds comprise many safe antibiotics, chemical compounds, and also small molecules from plant sources. Of the 150 unique compounds, 101 compounds are FDA approved. We selected the top 20 FDA-approved molecules based on safety and potency and studied their minimum inhibitory concentration and minimum bactericidal concentration. The promising safe FDA-approved candidates that show low minimum inhibitory concentration and minimum bactericidal concentration values can be chosen as lead molecules for further advanced studies.


Asunto(s)
Antibacterianos/farmacología , Borrelia burgdorferi/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas/farmacología , Antibacterianos/química , Borrelia burgdorferi/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Humanos , Enfermedad de Lyme/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
16.
Oncotarget ; 7(8): 8653-62, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26840025

RESUMEN

The transcription factor CREB (cAMP Response Element Binding Protein) is an important determinant in the growth of Acute Myeloid Leukemia (AML) cells. CREB overexpression increases AML cell growth by driving the expression of key regulators of apoptosis and the cell cycle. Conversely, CREB knockdown inhibits proliferation and survival of AML cells but not normal hematopoietic cells. Thus, CREB represents a promising drug target for the treatment of AML, which carries a poor prognosis. In this study, we performed a high-throughput small molecule screen to identify compounds that disrupt CREB function in AML cells. We screened ~114,000 candidate compounds from Stanford University's small molecule library, and identified 5 molecules that inhibit CREB function at micromolar concentrations, but are non-toxic to normal hematopoietic cells. This study suggests that targeting CREB function using small molecules could provide alternative approaches to treat AML.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Luciferasas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Sci Transl Med ; 7(306): 306ra148, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26400909

RESUMEN

Clostridium difficile infection (CDI) is a worldwide health threat that is typically triggered by the use of broad-spectrum antibiotics, which disrupt the natural gut microbiota and allow this Gram-positive anaerobic pathogen to thrive. The increased incidence and severity of disease coupled with decreased response, high recurrence rates, and emergence of multiple antibiotic-resistant strains have created an urgent need for new therapies. We describe pharmacological targeting of the cysteine protease domain (CPD) within the C. difficile major virulence factor toxin B (TcdB). Through a targeted screen with an activity-based probe for this protease domain, we identified a number of potent CPD inhibitors, including one bioactive compound, ebselen, which is currently in human clinical trials for a clinically unrelated indication. This drug showed activity against both major virulence factors, TcdA and TcdB, in biochemical and cell-based studies. Treatment in a mouse model of CDI that closely resembles the human infection confirmed a therapeutic benefit in the form of reduced disease pathology in host tissues that correlated with inhibition of the release of the toxic glucosyltransferase domain (GTD). Our results show that this non-antibiotic drug can modulate the pathology of disease and therefore could potentially be developed as a therapeutic for the treatment of CDI.


Asunto(s)
Antibacterianos/uso terapéutico , Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/tratamiento farmacológico , Virulencia/efectos de los fármacos , Animales , Azoles/uso terapéutico , Isoindoles , Ratones , Compuestos de Organoselenio/uso terapéutico
18.
Cancer Res ; 74(21): 6205-15, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25217519

RESUMEN

Cancers due to germline mutations in the BRCA1 gene tend to lack targets for approved chemoprevention agents. This study aimed at a targeted chemoprevention strategy for BRCA1-associated malignancies. Mutant BRCA1 limits the base-excision DNA repair activity that addresses oxidative DNA damage, the accumulation of which heightens one's risk for cancer. Therefore, we conducted a high-throughput chemical screen to identify drug candidates that could attenuate the inhibitory effects of mutant BRCA1 on this repair activity, thereby describing a new class of DNA repair-activating chemopreventive agents. In the screen design, such drugs functioned by enhancing base-excision DNA repair of oxidative DNA damage in the presence of mutant BRCA1, with minimal cytotoxicity. We identified at least one new agent that decreased malignant properties associated with tumorigenesis, including anchorage-independent growth and tumor progression. This work offers a preclinical proof-of-concept for a wholly new approach to chemoprevention in carriers of BRCA1 mutations as a strategy to reduce the prevalence of BRCA1-associated malignancy.


Asunto(s)
Proteína BRCA1/antagonistas & inhibidores , Neoplasias de la Mama/genética , Terapia Molecular Dirigida , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Proteína BRCA1/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Femenino , Mutación de Línea Germinal , Humanos , Células MCF-7 , Bibliotecas de Moléculas Pequeñas/química
19.
Chem Biol ; 20(11): 1352-63, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24183972

RESUMEN

Phenotypic high-throughput chemical screens allow for discovery of small molecules that modulate complex phenotypes and provide lead compounds for novel therapies; however, identification of the mechanistically relevant targets remains a major experimental challenge. We report the application of sequential unbiased high-throughput chemical and ultracomplex small hairpin RNA (shRNA) screens to identify a distinctive class of inhibitors that target nicotinamide phosphoribosyl transferase (NAMPT), a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide, a crucial cofactor in many biochemical processes. The lead compound STF-118804 is a highly specific NAMPT inhibitor, improves survival in an orthotopic xenotransplant model of high-risk acute lymphoblastic leukemia, and targets leukemia stem cells. Tandem high-throughput screening using chemical and ultracomplex shRNA libraries, therefore, provides a rapid chemical genetics approach for seamless progression from small-molecule lead identification to target discovery and validation.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Citocinas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Picolinas/farmacología , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Benzamidas/química , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estructura Molecular , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Fenotipo , Picolinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
Mol Cancer Ther ; 12(9): 1896-905, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23825064

RESUMEN

Deregulation of c-Myc plays a central role in the tumorigenesis of many human cancers. Yet, the development of drugs regulating c-Myc activity has been challenging. To facilitate the identification of c-Myc inhibitors, we developed a molecular imaging sensor-based high-throughput screening (HTS) system. This system uses a cell-based assay to detect c-Myc activation in a HTS format, which is established from a pure clone of a stable breast cancer cell line that constitutively expresses a c-Myc activation sensor. Optimization of the assay performance in the HTS format resulted in uniform and robust signals at the baseline. Using this system, we conducted a quantitative HTS against approximately 5,000 existing bioactive compounds from five different libraries. Thirty-nine potential hits were identified, including currently known c-Myc inhibitors. There are a few among the top potent hits that are not known for anti-c-Myc activity. One of these hits is nitazoxanide, a thiazolide for treating human protozoal infections. Validation of nitazoxanide in different cancer cell lines revealed a high potency for c-Myc inhibition with IC50 ranging between 10 and 500 nmol/L. Oral administration of nitazoxanide in breast cancer xenograft mouse models significantly suppressed tumor growth by inhibition of c-Myc and induction of apoptosis. These findings suggest a potential of nitazoxanide to be repurposed as a new antitumor agent for inhibition of c-Myc-associated neoplasia. Our work also demonstrated the unique advantage of molecular imaging in accelerating discovery of drugs for c-Myc-targeted cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Tiazoles/farmacología , Animales , Antineoplásicos/aislamiento & purificación , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Imagen Molecular , Trasplante de Neoplasias , Nitrocompuestos , Tiazoles/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA