Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39345648

RESUMEN

Background: It has been reported that circadian clock components, Brain and Muscle ARNT-Like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK), are uniquely essential for glioblastoma (GBM) stem cell (GSC) biology and survival. Consequently, we developed a novel Cryptochrome (CRY) activator SHP1705, which inhibits BMAL1-CLOCK transcriptional activity. Methods: We analyzed buffy coats isolated from Phase 1 clinical trial subjects' blood to assess any changes to circadian, housekeeping, and blood transcriptome-based biomarkers following SHP1705 treatment. We utilized GlioVis to determine which circadian genes are differentially expressed in non-tumor versus GBM tissues. We employed in vitro and in vivo methods to test the efficacy of SHP1705 against patient-derived GSCs and xenografts in comparison to earlier CRY activator scaffolds. Additionally, we applied a novel-REV-ERB agonist SR29065, which inhibits BMAL1 transcription, to determine whether targeting both negative limbs of the circadian transcription-translation feedback loop (TTFL) would yield synergistic effects against various GBM cells. Results: SHP1705 is safe and well-tolerated in Phase I clinical trials. SHP1705 has increased selectivity for the CRY2 isoform and potency against GSC viability compared to previously published CRY activators. SHP1705 prolonged survival in mice bearing GBM tumors established with GSCs. When combined with the novel REV-ERB agonist SR29065, SHP1705 displayed synergy against multiple GSC lines and differentiated GSCs (DGCs). Conclusions: These demonstrate the efficacy of SHP1705 against GSCs, which pose for GBM patient outcomes. They highlight the potential of novel circadian clock compounds in targeting GBM as single agents or in combination with each other or current standard-of-care. KEY POINTS: SHP1705 is a novel CRY2 activator that has shown success in Phase 1 safety trialsSHP1705 has a significantly improved efficacy against GSCs and GBM PDX tumorsNovel REV-ERB agonist SR29065 and SHP1705 display synergistic effects against GSCs. IMPORTANCE OF THE STUDY: CRY2 is decreased in GBM tissues compared to CRY1 suggesting that promoting CRY2 activity will be an efficacious GBM treatment paradigm. SHP1705, a CRY2 activator that has shown success in Phase 1 safety trials, has significantly improved preclinical efficacy. Novel REV-ERB agonist SR29065 displays synergistic effects against diverse GBM cells.

2.
J Med Chem ; 66(21): 14815-14823, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37888788

RESUMEN

Autoimmune diseases affect 50 million Americans, predominantly women, and are thought to be one of the top 10 leading causes of death among women in age groups up to 65 years. A central role for TH17 cells has been highlighted by genome-wide association studies (GWAS) linking genes preferentially expressed in TH17 cells to several human autoimmune diseases. We and others have reported that the nuclear receptors REV-ERBα and ß are cell-intrinsic repressors of TH17 cell development and pathogenicity and might therefore be therapeutic targets for intervention. Herein, we describe detailed SAR studies of a novel REV-ERBα-selective scaffold. Metabolic stability of the ligands was optimized allowing for in vivo interrogation of the receptor in a mouse model of multiple sclerosis (EAE) with a ligand (34). Reduction in frequency and number of T-cells in the CNS as well as key REV-ERB target genes is a measure of target engagement in vivo.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esclerosis Múltiple , Ratones , Animales , Humanos , Femenino , Masculino , Factores de Transcripción/genética , Diferenciación Celular , Esclerosis Múltiple/tratamiento farmacológico , Relación Estructura-Actividad , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo
4.
Aging (Albany NY) ; 15(1): 37-52, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36626253

RESUMEN

Choroidal neovascularization (CNV) causes acute vision loss in neovascular age-related macular degeneration (AMD). Genetic variations of the nuclear receptor RAR-related orphan receptor alpha (RORα) have been linked with neovascular AMD, yet its specific role in pathological CNV development is not entirely clear. In this study, we showed that Rora was highly expressed in the mouse choroid compared with the retina, and genetic loss of RORα in Staggerer mice (Rorasg/sg) led to increased expression levels of Vegfr2 and Tnfa in the choroid and retinal pigment epithelium (RPE) complex. In a mouse model of laser-induced CNV, RORα expression was highly increased in the choroidal/RPE complex post-laser, and loss of RORα in Rorasg/sg eyes significantly worsened CNV with increased lesion size and vascular leakage, associated with increased levels of VEGFR2 and TNFα proteins. Pharmacological inhibition of RORα also worsened CNV. In addition, both genetic deficiency and inhibition of RORα substantially increased vascular growth in isolated mouse choroidal explants ex vivo. RORα inhibition also promoted angiogenic function of human choroidal endothelial cell culture. Together, our results suggest that RORα negatively regulates pathological CNV development in part by modulating angiogenic response of the choroidal endothelium and inflammatory environment in the choroid/RPE complex.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular Húmeda , Ratones , Humanos , Animales , Inhibidores de la Angiogénesis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Agudeza Visual , Degeneración Macular Húmeda/complicaciones , Neovascularización Coroidal/genética , Neovascularización Coroidal/tratamiento farmacológico , Rayos Láser , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
5.
Front Immunol ; 13: 1028366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466897

RESUMEN

T cells rapidly transition from a quiescent state into active proliferation and effector function upon exposure to cognate antigen. These processes are tightly controlled by signal transduction pathways that influence changes in chromatin remodeling, gene transcription, and metabolism, all of which collectively drive specific T cell memory or effector cell development. Dysregulation of any of these events can mediate disease and the past several years has shown unprecedented novel approaches to understand these events, down to the single-cell level. The massive explosion of sequencing approaches to assess the genome and transcriptome at the single cell level has transformed our understanding of T cell activation, developmental potential, and effector function under normal and various disease states. Despite these advances, there remains a significant dearth of information regarding how these events are translated to the protein level. For example, resolution of protein isoforms and/or specific post-translational modifications mediating T cell function remains obscure. The application of proteomics can change that, enabling significant insights into molecular mechanisms that regulate T cell function. However, unlike genomic approaches that have enabled exquisite visualization of T cell dynamics at the mRNA and chromatin level, proteomic approaches, including those at the single-cell level, has significantly lagged. In this review, we describe recent studies that have enabled a better understanding of how protein synthesis and degradation change during T cell activation and acquisition of effector function. We also highlight technical advances and how these could be applied to T cell biology. Finally, we discuss future needs to expand upon our current knowledge of T cell proteomes and disease.


Asunto(s)
Proteoma , Proteómica , Activación de Linfocitos/genética , Procesamiento Proteico-Postraduccional , Transcriptoma
6.
Immunometabolism ; 4(2)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35475255

RESUMEN

Since their discovery, a significant amount of progress has been made understanding T helper 17 (TH17) cells' roles in immune homeostasis and disease. Outside of classical cytokine signaling, environmental and cellular intrinsic factors, including metabolism, have proven to be critical for non-pathogenic vs pathogenic TH17 cell development, clearance of infections, and disease. The nuclear receptor RORγt has been identified as a key regulator of TH17-mediated inflammation. Nuclear receptors regulate a variety of physiological processes, ranging from reproduction to the circadian rhythm, immunity to metabolism. Outside of RORγt, the roles of other nuclear receptors in TH17-mediated immunity are not as well established. In this mini-review we describe recent studies that revealed a role for a different member of the nuclear receptor superfamily, REV-ERBα, in the regulation of TH17 cells and autoimmunity. We highlight similarities and differences between reports, potential roles beyond TH17-mediated cytokine regulation, unresolved questions in the field, as well as the translational potential of targeting REV-ERBα.

7.
SLAS Discov ; 27(4): 242-248, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35331960

RESUMEN

NR2F6 is considered an orphan nuclear receptor since its endogenous ligand has yet to be identified. Recently, NR2F6 has emerged as a novel cancer therapeutic target. NR2F6 has been demonstrated to be upregulated or overexpressed in several cancers. Importantly, Nr2f6-/- mice spontaneously reject tumors and develop host-protective immunological memory, a consequence of NR2F6 acting as an immune checkpoint in effector T cells. Collectively, these data suggest that modulation of NR2F6 activity may have important clinical applications in the fight against cancer. The nuclear receptor superfamily of ligand-regulated transcription factors has proven to be an excellent source of targets for therapeutic intervention of a broad range of diseases. Approximately 15% of FDA approved drugs target NRs, demonstrating their clinical efficacy. To identify small molecule regulators of NR2F6 activity, with the overall goal of immuno-oncology, we developed and initiated a high-throughput cell-based assay that specifically measures the transcriptional activity of NR2F6. We completed automated screening of approximately 666,000 compounds and identified 5,008 initial hits. Further screening efforts, including counterscreening assays, confirmed 128 of these hits, most of which had IC50s of equal to or less than 5µM potencies. Here, we report, for the first time, the identification of several small molecule compounds to the orphan nuclear receptor, NR2F6.


Asunto(s)
Neoplasias , Receptores Nucleares Huérfanos , Proteínas Represoras , Animales , Ensayos Analíticos de Alto Rendimiento , Ligandos , Ratones , Neoplasias/patología
8.
Redox Biol ; 51: 102261, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35176707

RESUMEN

Retinal pigment epithelium (RPE) dysfunction and atrophy occur in dry age-related macular degeneration (AMD), often leading to photoreceptor degeneration and vision loss. Accumulated oxidative stress during aging contributes to RPE dysfunction and degeneration. Here we show that the nuclear receptor REV-ERBα, a redox sensitive transcription factor, protects RPE from age-related degeneration and oxidative stress-induced damage. Genetic deficiency of REV-ERBα leads to accumulated oxidative stress, dysfunction and degeneration of RPE, and AMD-like ocular pathologies in aging mice. Loss of REV-ERBα exacerbates chemical-induced RPE damage, and pharmacological activation of REV-ERBα protects RPE from oxidative damage both in vivo and in vitro. REV-ERBα directly regulates transcription of nuclear factor erythroid 2-related factor 2 (NRF2) and its downstream antioxidant enzymes superoxide dismutase 1 (SOD1) and catalase to counter oxidative damage. Moreover, aged mice with RPE specific knockout of REV-ERBα also exhibit accumulated oxidative stress and fundus and RPE pathologies. Together, our results suggest that REV-ERBα is a novel intrinsic protector of the RPE against age-dependent oxidative stress and a new molecular target for developing potential therapies to treat age-related retinal degeneration.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Degeneración Macular/genética , Degeneración Macular/patología , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Estrés Oxidativo/fisiología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/metabolismo
9.
Immunometabolism ; 4(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-34900348

RESUMEN

T cells rapidly convert their cellular metabolic requirements upon activation, switching to a highly glycolytic program to satisfy their increasingly complex energy needs. Fundamental metabolic differences have been established for the development of Foxp3+ T regulatory (Treg) cells versus TH17 cells, alterations of which can drive disease. TH17 cell dysregulation is a driver of autoimmunity and chronic inflammation, contributing to pathogenesis in diseases such as multiple sclerosis. A recent paper published in Cell by Wagner, et al. combined scRNA-seq and metabolic mapping data to interrogate potential metabolic modulators of TH17 cell pathogenicity. This Compass to TH17 cell metabolism highlights the polyamine pathway as a critical regulator of TH17/Treg cell function, signifying its potential as a therapeutic target.

10.
Nature ; 593(7857): 147-151, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33828301

RESUMEN

Bile acids are lipid-emulsifying metabolites synthesized in hepatocytes and maintained in vivo through enterohepatic circulation between the liver and small intestine1. As detergents, bile acids can cause toxicity and inflammation in enterohepatic tissues2. Nuclear receptors maintain bile acid homeostasis in hepatocytes and enterocytes3, but it is unclear how mucosal immune cells tolerate high concentrations of bile acids in the small intestine lamina propria (siLP). CD4+ T effector (Teff) cells upregulate expression of the xenobiotic transporter MDR1 (encoded by Abcb1a) in the siLP to prevent bile acid toxicity and suppress Crohn's disease-like small bowel inflammation4. Here we identify the nuclear xenobiotic receptor CAR (encoded by Nr1i3) as a regulator of MDR1 expression in T cells that can safeguard against bile acid toxicity and inflammation in the mouse small intestine. Activation of CAR induced large-scale transcriptional reprogramming in Teff cells that infiltrated the siLP, but not the colon. CAR induced the expression of not only detoxifying enzymes and transporters in siLP Teff cells, as in hepatocytes, but also the key anti-inflammatory cytokine IL-10. Accordingly, CAR deficiency in T cells exacerbated bile acid-driven ileitis in T cell-reconstituted Rag1-/- or Rag2-/- mice, whereas pharmacological activation of CAR suppressed it. These data suggest that CAR acts locally in T cells that infiltrate the small intestine to detoxify bile acids and resolve inflammation. Activation of this program offers an unexpected strategy to treat small bowel Crohn's disease and defines lymphocyte sub-specialization in the small intestine.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Regulación de la Expresión Génica , Intestino Delgado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Linfocitos T/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/biosíntesis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Receptor de Androstano Constitutivo , Enfermedad de Crohn/metabolismo , Femenino , Ileítis/metabolismo , Inflamación/metabolismo , Interleucina-10/biosíntesis , Interleucina-10/genética , Intestino Delgado/citología , Ratones
11.
Sci Adv ; 7(5)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33571111

RESUMEN

Heme is the endogenous ligand for the constitutively repressive REV-ERB nuclear receptors, REV-ERBα (NR1D1) and REV-ERBß (NR1D2), but how heme regulates REV-ERB activity remains unclear. Cellular studies indicate that heme is required for the REV-ERBs to bind the corepressor NCoR and repress transcription. However, fluorescence-based biochemical assays suggest that heme displaces NCoR; here, we show that this is due to a heme-dependent artifact. Using ITC and NMR spectroscopy, we show that heme binding remodels the thermodynamic interaction profile of NCoR receptor interaction domain (RID) binding to REV-ERBß ligand-binding domain (LBD). We solved two crystal structures of REV-ERBß LBD cobound to heme and NCoR peptides, revealing the heme-dependent NCoR binding mode. ITC and chemical cross-linking mass spectrometry reveals a 2:1 LBD:RID stoichiometry, consistent with cellular studies showing that NCoR-dependent repression of REV-ERB transcription occurs on dimeric DNA response elements. Our findings should facilitate renewed progress toward understanding heme-dependent REV-ERB activity.

12.
Immunometabolism ; 3(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614166

RESUMEN

Targeting glycolysis in T helper 17 (Th17) cells presents an attractive opportunity to treat Th17 cell-mediated autoimmune diseases such as multiple sclerosis (MS). Pyruvate kinase isoform 2 (PKM2) is a glycolytic enzyme expressed in T cells infiltrating the central nervous system in a mouse model of MS, suggesting PKM2 modulation could provide a new avenue for MS therapeutics. In a recent article in Science Signaling, Seki et al. show that pharmacological modulation of PKM2 alters but does not ameliorate disease in a mouse model of MS. These results warrant further consideration of PKM2 modulators to treat Th17 cell-mediated autoimmunity.

13.
Nat Commun ; 12(1): 76, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397953

RESUMEN

Full development of IL-17 producing CD4+ T helper cells (TH17 cells) requires the transcriptional activity of both orphan nuclear receptors RORα and RORγt. However, RORα is considered functionally redundant to RORγt; therefore, the function and therapeutic value of RORα in TH17 cells is unclear. Here, using mouse models of autoimmune and chronic inflammation, we show that expression of RORα is required for TH17 cell pathogenicity. T-cell-specific deletion of RORα reduces the development of experimental autoimmune encephalomyelitis (EAE) and colitis. Reduced inflammation is associated with decreased TH17 cell development, lower expression of tissue-homing chemokine receptors and integrins, and increased frequencies of Foxp3+ T regulatory cells. Importantly, inhibition of RORα with a selective small molecule antagonist mostly phenocopies our genetic data, showing potent suppression of the in vivo development of both chronic/progressive and relapsing/remitting EAE, but with no effect on overall thymic cellularity. Furthermore, use of the RORα antagonist effectively inhibits human TH17 cell differentiation and memory cytokine secretion. Together, these data suggest that RORα functions independent of RORγt in programming TH17 pathogenicity and identifies RORα as a safer and more selective therapeutic target for the treatment of TH17-mediated autoimmunity.


Asunto(s)
Inflamación/inmunología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Células Th17/inmunología , Animales , Autoinmunidad/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Enfermedad Crónica , Colon/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Células HEK293 , Humanos , Inflamación/genética , Ratones Endogámicos C57BL , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Tamaño de los Órganos/efectos de los fármacos , Índice de Severidad de la Enfermedad , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Tiofenos/química , Tiofenos/farmacología
14.
Biochem Biophys Res Commun ; 527(4): 1000-1007, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32439175

RESUMEN

The nuclear receptors REV-ERBα and REV-ERBß have been demonstrated to play key roles in the regulation of numerous physiological functions, such as metabolism and the circadian rhythm. Recent studies have established the REV-ERBs' roles in immunity, including macrophage and T cell responses. In contrast, their roles in dendritic cells have not been well defined. Dendritic cells are potent antigen presenting cells, connecting microbial sensing and innate immunity to adaptive immune responses. We demonstrate that both REV-ERBα and REV-ERBß expression is upregulated during the course of bone marrow derived dendritic cell (BMDC) differentiation. BMDCs from REV-ERBα and REV-ERBß deficient mice showed enhanced expression of maturation markers like CD86, MHCII, and proinflammatory cytokines. Conversely, treatment of BMDCs with a REV-ERB-specific agonist, SR9009, inhibited the expression of maturation markers and proinflammatory cytokines. Our study suggests the REV-ERBs act as negative regulators of dendritic cell development and activation. These results indicate that pharmacological modulation of REV-ERB activity could be an attractive strategy to modulate DC activation status and for DC-based therapies.


Asunto(s)
Células de la Médula Ósea/citología , Células Dendríticas/citología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Pirrolidinas/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Proteínas Represoras/agonistas , Tiofenos/farmacología
15.
Nat Commun ; 11(1): 956, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075969

RESUMEN

Nuclear receptor (NR) transcription factors use a conserved activation function-2 (AF-2) helix 12 mechanism for agonist-induced coactivator interaction and NR transcriptional activation. In contrast, ligand-induced corepressor-dependent NR repression appears to occur through structurally diverse mechanisms. We report two crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) in an inverse agonist/corepressor-bound transcriptionally repressive conformation. Helix 12 is displaced from the solvent-exposed active conformation and occupies the orthosteric ligand-binding pocket enabled by a conformational change that doubles the pocket volume. Paramagnetic relaxation enhancement (PRE) NMR and chemical crosslinking mass spectrometry confirm the repressive helix 12 conformation. PRE NMR also defines the mechanism of action of the corepressor-selective inverse agonist T0070907, and reveals that apo-helix 12 exchanges between transcriptionally active and repressive conformations-supporting a fundamental hypothesis in the NR field that helix 12 exchanges between transcriptionally active and repressive conformations.


Asunto(s)
Benzamidas/metabolismo , Proteínas Co-Represoras/metabolismo , PPAR gamma/química , PPAR gamma/metabolismo , Piridinas/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Sitios de Unión , Proteínas Co-Represoras/química , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Mutación , Coactivadores de Receptor Nuclear/química , Coactivadores de Receptor Nuclear/metabolismo , PPAR gamma/agonistas , PPAR gamma/genética , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Transcripción Genética
16.
JCI Insight ; 5(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31941836

RESUMEN

Recent discoveries demonstrate a critical role for circadian rhythms and sleep in immune system homeostasis. Both innate and adaptive immune responses - ranging from leukocyte mobilization, trafficking, and chemotaxis to cytokine release and T cell differentiation -are mediated in a time of day-dependent manner. The National Institutes of Health (NIH) recently sponsored an interdisciplinary workshop, "Sleep Insufficiency, Circadian Misalignment, and the Immune Response," to highlight new research linking sleep and circadian biology to immune function and to identify areas of high translational potential. This Review summarizes topics discussed and highlights immediate opportunities for delineating clinically relevant connections among biological rhythms, sleep, and immune regulation.


Asunto(s)
Ritmo Circadiano/fisiología , Inmunidad , Sueño/fisiología , Animales , Diferenciación Celular , Ritmo Circadiano/inmunología , Educación , Humanos , Sistema Inmunológico , Microbiota/inmunología , National Institutes of Health (U.S.) , Sueño/inmunología , Linfocitos T , Estados Unidos
17.
Nature ; 576(7785): 138-142, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31748741

RESUMEN

Haem is an essential prosthetic group of numerous proteins and a central signalling molecule in many physiologic processes1,2. The chemical reactivity of haem means that a network of intracellular chaperone proteins is required to avert the cytotoxic effects of free haem, but the constituents of such trafficking pathways are unknown3,4. Haem synthesis is completed in mitochondria, with ferrochelatase adding iron to protoporphyrin IX. How this vital but highly reactive metabolite is delivered from mitochondria to haemoproteins throughout the cell remains poorly defined3,4. Here we show that progesterone receptor membrane component 2 (PGRMC2) is required for delivery of labile, or signalling haem, to the nucleus. Deletion of PGMRC2 in brown fat, which has a high demand for haem, reduced labile haem in the nucleus and increased stability of the haem-responsive transcriptional repressors Rev-Erbα and BACH1. Ensuing alterations in gene expression caused severe mitochondrial defects that rendered adipose-specific PGRMC2-null mice unable to activate adaptive thermogenesis and prone to greater metabolic deterioration when fed a high-fat diet. By contrast, obese-diabetic mice treated with a small-molecule PGRMC2 activator showed substantial improvement of diabetic features. These studies uncover a role for PGRMC2 in intracellular haem transport, reveal the influence of adipose tissue haem dynamics on physiology and suggest that modulation of PGRMC2 may revert obesity-linked defects in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Hemo/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo , Animales , Homeostasis , Humanos , Espacio Intracelular/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de Progesterona/deficiencia , Receptores de Progesterona/genética , Transcripción Genética
18.
Sci Immunol ; 4(40)2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586012

RESUMEN

Many gut functions are attuned to circadian rhythm. Intestinal group 3 innate lymphoid cells (ILC3s) include NKp46+ and NKp46- subsets, which are RORγt dependent and provide mucosal defense through secretion of interleukin-22 (IL-22) and IL-17. Because ILC3s highly express some key circadian clock genes, we investigated whether ILC3s are also attuned to circadian rhythm. We noted circadian oscillations in the expression of clock and cytokine genes, such as REV-ERBα, IL-22, and IL-17, whereas acute disruption of the circadian rhythm affected cytokine secretion by ILC3s. Because of prominent and rhythmic expression of REV-ERBα in ILC3s, we also investigated the impact of constitutive deletion of REV-ERBα, which has been previously shown to inhibit the expression of a RORγt repressor, NFIL3, while also directly antagonizing DNA binding of RORγt. Development of the NKp46+ ILC3 subset was markedly impaired, with reduced cell numbers, RORγt expression, and IL-22 production in REV-ERBα-deficient mice. The NKp46- ILC3 subsets developed normally, potentially due to compensatory expression of other clock genes, but IL-17 secretion paradoxically increased, probably because RORγt was not antagonized by REV-ERBα. We conclude that ILC3s are attuned to circadian rhythm, but clock regulator REV-ERBα also has circadian-independent impacts on ILC3 development and functions due to its roles in the regulation of RORγt.


Asunto(s)
Ritmo Circadiano/inmunología , Inmunidad Innata/inmunología , Intestinos/inmunología , Linfocitos/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Animales , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/deficiencia , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/inmunología
19.
Proc Natl Acad Sci U S A ; 116(37): 18528-18536, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31455731

RESUMEN

T helper 17 (Th17) cells produce interleukin-17 (IL-17) cytokines and drive inflammatory responses in autoimmune diseases such as multiple sclerosis. The differentiation of Th17 cells is dependent on the retinoic acid receptor-related orphan nuclear receptor RORγt. Here, we identify REV-ERBα (encoded by Nr1d1), a member of the nuclear hormone receptor family, as a transcriptional repressor that antagonizes RORγt function in Th17 cells. REV-ERBα binds to ROR response elements (RORE) in Th17 cells and inhibits the expression of RORγt-dependent genes including Il17a and Il17f Furthermore, elevated REV-ERBα expression or treatment with a synthetic REV-ERB agonist significantly delays the onset and impedes the progression of experimental autoimmune encephalomyelitis (EAE). These results suggest that modulating REV-ERBα activity may be used to manipulate Th17 cells in autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células Th17/inmunología , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/inmunología , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Sitios Genéticos , Células HEK293 , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Ratones , Ratones Transgénicos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico , RNA-Seq , Elementos de Respuesta/genética , Células Th17/metabolismo , Tiofenos/farmacología , Tiofenos/uso terapéutico
20.
Med Chem ; 15(6): 676-684, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30799793

RESUMEN

BACKGROUND: Despite a massive industry endeavor to develop RORγ-modulators for autoimmune disorders, there has been no indication of efforts to target the close family member RORα for similar indications. This may be due to the misconception that RORα is redundant to RORγ, or the inherent difficulty in cultivating tractable starting points for RORα. RORα-selective modulators would be useful tools to interrogate the biology of this understudied orphan nuclear receptor. OBJECTIVE: The goal of this research effort was to identify and optimize synthetic ligands for RORα starting from the known LXR agonist T0901317. METHODS: Fourty-five analogs of the sulfonamide lead (1) were synthesized and evaluated for their ability to suppress the transcriptional activity of RORα, RORγ, and LXRα in cell-based assays. Analogs were characterized by 1H-NMR, 13C-NMR, and LC-MS analysis. The pharmacokinetic profile of the most selective RORα inverse agonist was evaluated in rats with intraperitoneal (i.p.) and per oral (p.o.)dosing. RESULTS: Structure-activity relationship studies led to potent dual RORα/RORγ inverse agonists as well as RORα-selective inverse agonists (20, 28). LXR activity could be reduced by removing the sulfonamide nitrogen substituent. Attempts to improve the potency of these selective leads by varying substitution patterns throughout the molecule proved challenging. CONCLUSION: The synthetic RORα-selective inverse agonists identified (20, 28) can be utilized as chemical tools to probe the function of RORα in vitro and in vivo.


Asunto(s)
Agonismo Inverso de Drogas , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Sulfonamidas/farmacología , Animales , Humanos , Hidrocarburos Fluorados/química , Ligandos , Receptores X del Hígado/agonistas , Ratones , Estructura Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Ratas , Relación Estructura-Actividad , Sulfonamidas/agonistas , Sulfonamidas/síntesis química , Sulfonamidas/química , Sulfonamidas/farmacocinética , Células Th17
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...