Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Clin Exp Reprod Med ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757278

RESUMEN

Objective: Scrotal hyperthermia poses a significant threat to spermatogenesis and fertility in mammalian species. This study investigated the effects of vitamin B12 and vitamin C on spermatogenesis in adult male mice subjected to long-term scrotal hyperthermia. The rationale is based on the sensitivity of germ cells and epididymal sperm to increased scrotal temperatures. While various factors, both internal and external, can raise the testicular temperature, this study focused on the potential therapeutic roles of vitamins B12 and C. Methods: After inducing scrotal hyperthermia in mice, vitamin B12 and vitamin C were administered for 35 days. We assessed sperm parameters, serum testosterone levels, stereological parameters, the percentage of apoptotic cells, reactive oxygen species (ROS) levels, and glutathione (GSH) levels. Additionally, real-time polymerase chain reaction was used to analyze the expression of the c-kit, stimulated by retinoic acid gene 8 (Stra8), and proliferating cell nuclear antigen (Pcna) genes. Results: Vitamin C was more effective than vitamin B12 in improving sperm parameters and enhancing stereological parameters. The study showed a significant decrease in apoptotic cells and a beneficial modulation of ROS and GSH levels following vitamin administration. Moreover, both vitamins positively affected the expression levels of the c-kit, Stra8, and Pcna genes. Conclusion: This research deepens our understanding of the combined impact of vitamins B12 and C in mitigating the effects of scrotal hyperthermia, providing insights into potential therapeutic strategies for heat stress-related infertility. The findings highlight the importance of considering vitamin supplementation as a practical approach to counter the detrimental effects of elevated scrotal temperatures on male reproductive health.

2.
J Lasers Med Sci ; 15: e3, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655046

RESUMEN

Introduction: In men, several factors cause infertility, among which we can mention damage to sperm due to high temperature. So far, various treatments have been proposed for it, but they have not been highly effective. The current study aimed to evaluate the effect of exosome therapy (EXO) and photobiomodulation therapy (PBMT) on spermatogenesis arrest in male mice after scrotum hyperthermia. Methods: In this experimental study, the animals were divided into four groups: control, scrotal hyperthermia, scrotal hyperthermia+EXO (100 µL/d) (mice were treated for 30 days), scrotal hyperthermia+PBMT (laser of 0.03 J/cm2 for 30 seconds/for 30 days). Hyperthermia was induced by exposure to the temperature of 43 °C for 20 minute every day for 5 times. After 6 weeks, the animals were sacrificed. Results: The treated groups showed a significant increase in sperm parameters, as compared to the hyperthermic groups. Moreover, these favorable effects were observed in relation to the volume of testicular tissue, the number of germ cells, Leydig cells and Sertoli cells, and the level of testosterone. Research on antioxidants showed a significant reduction in oxidized glutathione (GSSG) and reactive oxygen species (ROS) in the treatment groups in comparison to the hyperthermia group (P<0.001). Also, there has been a significant increase in the amount of hydrogen peroxide enzyme observed in the hyperthermia group as opposed to the treatment group (P<0.001). Conclusion: These findings show that EXO and PBMT can improve spermatogenesis caused by hyperthermia, reduce ROS and GSSG, and increase glutathione (GSH) and sperm quality.

3.
Heliyon ; 10(7): e28588, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38576572

RESUMEN

This study involved the incorporation of an antibacterial garlic extract into titanium oxide nanotubes (TNTs) formed via the anodization of Ti6Al4V implants. The garlic extract, obtained through low-temperature extraction aided by ultrasound waves, was loaded into the nanotubes. The presence of the nanotubes was confirmed through X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) were used to investigate the presence of bioactive compounds, particularly sulfur compounds responsible for garlic's antibacterial effects. The impact of loading two concentrations (0.1 and 0.2 g per milliliter) of garlic extract on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria was examined. Results indicated a decrease in the growth range of S. aureus from 109 to 106 (CFU/ml) and E. coli from 1011 to 109 (CFU/ml) upon treatment. Additionally, cell adhesion and viability tests conducted on MG63 cells revealed an 8% increase in cell viability with the 0.1 g per milliliter concentration and a 35% decrease with the 0.2 g per milliliter concentration of garlic extract after 72 h of incubation (They have been evaluated by Microculture tetrazolium (MTT) assay). GC-MS analysis identified the presence of diethyl phthalate compounds in the garlic extract, suggesting a potential correlation with cellular toxicity observed in the sample with the higher concentration (0.2 g per milliliter) of garlic extract. Overall, the TNTs loaded with 0.1 g per milliliter of garlic extract simultaneously demonstrated antibacterial activity, cell viability, adhesion, and growth enhancement.

4.
Int J Reprod Biomed ; 22(1): 17-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38544670

RESUMEN

Background: An increase in the temperature of the testis is associated with damage to the epithelium of seminiferous tubules and disruption of sperm production. Objective: The current study aimed to investigate the effect of the Sertoli cell-conditioned medium (SCCM) on the blood-testis-barrier associated genes and spermatogenesis process following scrotal hyperthermia. Materials and Methods: In this experimental study, 40 adult NMRI mice (8 wk, 25-30 gr) were allocated into 4 groups: I) control, II) DMEM (10 µl Dulbecco's Modified Eagle Medium), III) scrotal hyperthermia, and IV) scrotal hyperthermia+SCCM (10 µl SCCM). Hyperthermia was induced by placing the mice scrotum in water at 43 C for 20 min every other day for 10 days. Mice were treated every other day for 5 wk. Then the animals were euthanized, and the tails of epididymis were removed to analyze sperm parameters, testis were taken for stereological assessment, reactive oxygen spices and glutathione levels, and the expression of Ocln, Gja1, Cdh2, and Itgb1. Results: The results of sperm analysis indicated that SCCM-treated mice significantly increased sperm count and motility and reduced DNA fragmentation. In addition, histological and molecular findings showed that the volume of testicular tissue, the number of germ cells, the glutathione level, and the expression of Ocln, Gja1, Cdh2, and Itgb1 genes were significantly increased in the SCCM-treated mice. Conclusion: Findings suggest that growth factors of SCCM stimulate the proliferation and differentiation of germ cells through paracrine effects and upregulate the blood-testis-barrier-associated genes in mice subjected to scrotal hyperthermia.

5.
J Lasers Med Sci ; 14: e65, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38318218

RESUMEN

Introduction: Biophoton emission, the spontaneous release of photons from living cells, has emerged as an attractive field of research in the study of biological systems. Scientists have recently discovered that changes in biophoton emission could serve as potential indicators of pathological conditions. This intriguing phenomenon suggests that cells might communicate and interact with each other through the exchange of these faint but significant light signals. Therefore, the present study introduces intercellular relationships with biophoton release to detect normal and abnormal cell functions to further achieve cellular interactions by focusing on cell and cell arrangement in disease conditions. Methods: Twenty male mice were assigned to control and busulfan groups. Five weeks after the injection of busulfan, the testis was removed, and then the stereological techniques and TUNEL assay were applied to estimate the histopathology of the testis tissue sections. Results: The findings revealed that the ultra-weak biophoton emission in the control group was significantly lower than in the busulfan group. The oligospermia mice model showed that it significantly changed the spatial arrangement of testicular cells and notably decreased the testis volume, length of seminiferous tubules, and the number of testicular cells. The results of the TUNEL assay showed that the percentage of apoptotic cells significantly increased in the busulfan group. Conclusion: The ultra-weak biophoton emission from testis tissue was reduced in oligospermia mice. As a result, the decline of ultra-weak biophoton can indicate a change in cell arrangement, a decrease in intercellular interaction, and eventually disease.

6.
Molecules ; 27(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431944

RESUMEN

In the present study, calcined melamine (CM) and magnetite nanoparticles (MNPs) were encapsulated in a calcium alginate (CA) matrix to effectively activate peroxymonosulfate (PMS) and generate free radical species for the degradation of ibuprofen (IBP) drug. According to the Langmuir isotherm model, the adsorption capacities of the as-prepared microcapsules and their components were insignificant. The CM/MNPs/CA/PMS process caused the maximum degradation of IBP (62.4%) in 30 min, with a synergy factor of 5.24. Increasing the PMS concentration from 1 to 2 mM improved the degradation efficiency from 62.4 to 68.0%, respectively, while an increase to 3 mM caused a negligible effect on the reactor effectiveness. The process performance was enhanced by ultrasound (77.6% in 30 min), UV irradiation (91.6% in 30 min), and electrochemical process (100% in 20 min). The roles of O•H and SO4•- in the decomposition of IBP by the CM/MNPs/CA/PMS process were 28.0 and 25.4%, respectively. No more than 8% reduction in the degradation efficiency of IBP was observed after four experimental runs, accompanied by negligible leachate of microcapsule components. The bio-assessment results showed a notable reduction in the bio-toxicity during the treatment process based on the specific oxygen uptake rate (SOUR).


Asunto(s)
Nanopartículas de Magnetita , Alginatos , Antiinflamatorios no Esteroideos , Ibuprofeno , Polímeros , Agua
7.
Reprod Fertil Dev ; 34(17): 1078-1088, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36127818

RESUMEN

CONTEXT: Approximately 40-50% of all infertility cases are due to male infertility, and one of the most important causes of infertility is azoospermia. AIMS: This study aimed to evaluate the potential effect of elderberry on the spermatogenesis process in the azoospermia mice model. METHOD: Thirty adult male mice were randomised into three groups: control; busulfan (45mg/kg); and busulfan+elderberry (2%), 6mL orally per animal. Sperm samples were collected from the tail of the epididymis, and testis specimens were also collected and then subjected to sperm parameters analysis, histopathological evaluation, reactive oxygen species (ROS), and glutathione (GSH) measurement to determine the mRNA expression and hormonal assay. CONCLUSIONS: It can be concluded that the elderberry diet may be considered a complementary treatment to improve the spermatogenesis process in busulfan-induced azoospermic mice. IMPLICATIONS: Considering some limitations, the elderberry diet can be an alternate option for improving testicular damage following chemotherapy.


Asunto(s)
Azoospermia , Sambucus , Humanos , Masculino , Ratones , Animales , Azoospermia/inducido químicamente , Azoospermia/genética , Busulfano/farmacología , Semillas , Espermatogénesis , Testículo/metabolismo , Dieta
8.
J Reprod Infertil ; 23(2): 73-83, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36043135

RESUMEN

Background: Chemotherapeutic agents such as cyclophosphamide and busulfan have been shown to have a negative impact on the spermatogenesis process. Based on this fact, the objective of this study was to investigate the effects of edaravone on spermatogenesis in busulfan-induced mice. Methods: Forty adult male mice were equally divided into the four groups: 1) control, 2) edaravone, 3) busulfan, and 4) busulfan + edaravone. Then, the sperm parameters, histopathological examinations, and serum levels of testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were also assessed. Caspase-3, Beclin-1, and ATG-7 mRNA levels were also determined using real-time PCR. Results: Our results revealed that treatment of mice with edaravone in busulfan-induced azoospermia significantly improves sperm parameters, including total count, morphology, and viability (p<0.05). Furthermore, edaravone administration led to a significant increase in serum testosterone (p<0.0001) and FSH (p<0.001) levels, as well as testis weight (p<0.05) and volume (p<0.01). Edaravone also prevented a decrease in the number of testicular cells including spermatogonia (p<0.0001), primary spermatocytes (p<0.001), round spermatids (p<0.0001), Sertoli (p<0.01), and Leydig cells (p<0.0001) in busulfan-treated mice. Additionally, in busulfan-induced azoospermia, edaravone significantly reduced the percentage of sperm with immature chromatin (p<0.0001). Following treatment with edaravone, a decrease in reactive oxygen species (ROS) and an increase in glutathione (GSH) production were noted compared to busulfan-treated mice. Furthermore, caspase-3 (p<0.05), Beclin-1, and ATG-7 (p<0.001) genes expression decreased significantly in treatment groups compared to busulfan-induced azoospermia. Conclusion: According to our findings, edaravone can improve spermatogenesis in busulfan-induced azoospermia through free radical scavenging and autophagy modulation in testicular tissue.

9.
Sci Rep ; 12(1): 11473, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794461

RESUMEN

The adsorption of cadmium ions by magnetite (Fe3O4)@biosilica/alginate (MBA nano-hybrid) was the main aim of the present investigation. Herein, MBA nano-hybrid was synthesized via chemical precipitation technique. As-synthesized MBA nano-hybrid was characterized using FT-IR, FESEM and XRD analyzes. Based on the results, the maximum adsorption capacity of the adsorbent for the removal of Cd(II) was obtained at the initial pH of 7.0. At the initial Cd(II) concentration of 40 mg/L, increasing the reaction time to 180 min led to the Cd adsorption of 35.36 mg/g. Since the removal of Cd(II) after the reaction time of 60 min was insignificant, the reaction time of 60 min was considered as optimum reaction time for performing the experimental runs. According to the results, Langmuir isotherm and pseudo-second order kinetic models were the best fitted models with high correlation coefficients (R2 > 0.99). The results of thermodynamic study indicated exothermic (positive ΔH°) and spontaneous nature (negative ΔG°) of the adsorption of Cd(II) on the surface of MBA nano-hybrid. Negligible reduction in the adsorption capacity of the nano-hybrid was observed (16.57%) after fifth experimental runs, indicating high reusability potential of the as-synthesized nano-hybrid adsorbent.


Asunto(s)
Nanopartículas de Magnetita , Adsorción , Alginatos , Cadmio/química , Espectroscopía Infrarroja por Transformada de Fourier
10.
Chemosphere ; 303(Pt 3): 135201, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35660053

RESUMEN

In the present study, a binary heterojunction nanocomposite composed of graphitic carbon nitride (g-C3N4) and Zn/Fe-contained layered double hydroxide (ZnFe LDH) was employed as heterogeneous catalyst for the decomposition of tetracycline (TC) antibiotic utilizing Oxone and UV light irradiation. The sole use of g-C3N4/ZnFe LDH as adsorbent led to the negligible elimination of TC. In addition, the sole use of Oxone or UV (photolysis) and even their combination were not effective enough to degrade the target pollutant, while the combined process of g-C3N4/ZnFe LDH/Oxone/photolysis revealed significantly enhanced (synergistic) degradation of TC (92.4% within 30 min). Indirect detection tests for the identification of free radical species indicated the major role of both hydroxyl (•OH) and sulfate (SO4•-) radicals in the degradation of TC by the g-C3N4/ZnFe LDH/Oxone/photolysis system. The elimination of TC followed a pseudo-first order kinetic model. The complete degradation of TC (degradation efficiency of 100%) was achieved within the reaction time of 25 min when ultrasound (US) was applied as enhancing agent. Furthermore, the results of total organic carbon (TOC) analysis were used to exhibit progress in the mineralization of the pollutant. The bioassay results indicated the decreased toxicity of the process effluent toward microbial population of Escherichia coli after the treatment.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Antibacterianos , Catálisis , Hidróxidos , Hierro , Luz , Ácidos Sulfúricos , Tetraciclina , Tetraciclinas
11.
Chemosphere ; 297: 134129, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35231477

RESUMEN

An aero-electrochemical advanced oxidation process (aero-EAOP) equipped with graphite cathode and dimensionally stable anodes was utilized for the treatment of aquatic media containing common and emerging contaminants. Among various anode materials, the application of Ti/RuO2/IrO2/SnO2 anode resulted in the highest effectiveness. Central composite experimental design (CCED) was used to attain the optimum operational parameters in terms of chlorine generation. Simultaneous decolorization and ammonium removal by the aero-EAOP process were investigated. Accordingly, the decolorization efficiency of 94%, along with the ammonium removal of 65.2%, was obtained within 30 min. Implementation of ultrasound and UV irradiation resulted in the complete decolorization within 25 and 20 min, respectively. In comparison, the influence of ultrasound and UV irradiation on the ammonium removal by the aero-EAOP reactor was not remarkable. Mineralization efficiency of 75.1% was obtained during the short reaction time of 30 min. With increasing hydraulic retention time (HRT) from 2 to 20 min, decolorization efficiency increased from 12.0 to 55.7% and ammonium removal efficiency increased from 16.6 to 37.8%, respectively. The complete degradation of amoxicillin (AMX) and tetracycline (TC) antibiotics were achieved within 25 and 30 min, respectively. The degradation efficiencies of ibuprofen (IBP), acetaminophen (APAP) and endocrine disrupting compound of bisphenol A (BPA) were obtained to be 58, 66 and 78% within 30 min, respectively. Photo-assisted aero-EAOP was more efficient than the aero-EAOP in degrading target emerging pollutants.


Asunto(s)
Compuestos de Amonio , Grafito , Contaminantes Químicos del Agua , Aleaciones , Electrodos , Oxidación-Reducción , Óxidos/química , Titanio/química , Contaminantes Químicos del Agua/análisis
12.
J Mater Sci Mater Med ; 33(4): 34, 2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35347447

RESUMEN

Hydroxyapatite-carbon nanotubes (HA-CNTs) nanocomposite coating was applied by electrophoretic method on anodized Ti alloy to investigate its stability in simulated body fluid (SBF). The biocoating was characterized by using scanning electron microscope (SEM) for microstructure, X-ray diffraction (XRD) for crystallography. The effect of CNTs concentration on the coating properties was also investigated and found out that CNTs up to 5% has various improving effect on the system. It increased corrosion resistance and adhesion of the coating to the substrate and decreased the number of cracks on the coating. The results of the in vitro test showed that the cell viability increased with increasing the concentration of CNTs to 3 wt.% CNTs. Graphical abstract.


Asunto(s)
Nanocompuestos , Nanotubos de Carbono , Aleaciones/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Corrosión , Nanotubos de Carbono/química , Titanio
13.
Environ Sci Pollut Res Int ; 29(14): 20409-20420, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34738214

RESUMEN

This study aimed to investigate the degradability, mineralization, proposed decomposition pathway, intermediate products, and toxicity of effluent from trichlorfon (TCF) degradation in water by UV/sulfite-advanced reduction process (UV/S-ARP). This study was experimentally performed in a photochemical reactor as a batch operation. The source of light was a UV lamp. Sulfite ion was used as the reducing agent. After the treatment, the residual concentration of TCF was measured by liquid chromatography equipped with tandem mass spectrometry (LC-MS/MS). UV/S-ARP had the highest performance at an initial pH of 7, a sulfite ion concentration of 120 mg/L, a contact time of 60 min, and a TCF concentration of 10 mg/L. Under such conditions, the degradation efficiency of TCF was 96.0%, and the amount of mineralization based on the removal of TOC and COD was 74.6% and 79.5%, respectively. The results of the degradation mechanism showed that eaq- and SO3•- have played the greatest role in dechlorination and transformation of TCF. Based on the identified intermediates, more complex compounds are transformed into compounds with simpler structures by UV/S-ARP. Evaluating the toxicity of TCF by-products via ECOSAR bioassay showed that as-generated intermediates do not have acute and chronic adverse effects on fish. The results of our study indicated that the advanced reduction process could be an effective process for the purification of TCF-contaminated water.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Purificación del Agua , Cromatografía Liquida , Oxidación-Reducción , Plaguicidas/análisis , Espectrometría de Masas en Tándem , Triclorfón , Rayos Ultravioleta , Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
14.
Neurosci Lett ; 771: 136418, 2022 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-34954113

RESUMEN

Tramadol is a synthetic analogue of codeine and stimulates neurodegeneration in several parts of the brain that leads to various behavioral impairments. Despite the leading role of hippocampus in learning and memory as well as decreased function of them under influence of tramadol, there are few studies analyzing the effect of tramadol administration on gene expression profiling and structural consequences in hippocampus region. Thus, we sought to determine the effect of tramadol on both PC12 cell line and hippocampal tissue, from gene expression changes to structural alterations. In this respect, we investigated genome-wide mRNA expression using high throughput RNA-seq technology and confirmatory quantitative real-time PCR, accompanied by stereological analysis of hippocampus and behavioral assessment following tramadol exposure. At the cellular level, PC12 cells were exposed to 600 µM tramadol for 48 hrs, followed by the assessments of ROS amount and gene expression levels of neurotoxicity associated with neurodegenerative pathways such as apoptosis and autophagy. Moreover, the structural and functional alteration of the hippocampus under chronic exposure to tramadol was also evaluated. In this regard, rats were treated with tramadol at doses of 50 mg/kg for three consecutive weeks. In vitro data revealed that tramadol provoked ROS production and caused the increase in the expression of autophagic and apoptotic genes in PC12 cells. Furthermore, in-vivo results demonstrated that tramadol not only did induce hippocampal atrophy, but it also triggered microgliosis and microglial activation, causing upregulation of apoptotic and inflammatory markers as well as over-activation of neurodegeneration. Tramadol also interrupted spatial learning and memory function along with long-term potentiation (LTP). Taken all together, our data disclosed the neurotoxic effects of tramadol on both in vitro and in-vivo. Moreover, we proposed a potential correlation between disrupted biochemical cascades and memory deficit under tramadol administration.


Asunto(s)
Analgésicos Opioides/toxicidad , Hipocampo/efectos de los fármacos , Memoria , Tramadol/toxicidad , Animales , Apoptosis , Autofagia , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Células PC12 , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
15.
J Chem Neuroanat ; 114: 101961, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33933574

RESUMEN

One of the complex neurodegenerative disorders is Parkinson disease (PD). PD is mainly caused by dopaminergic (DAergic) neuron degeneration in the midbrain. The loss of DAergic neurons is considered as a key reason of motor functional defects in PD patients. Cell replacement strategies are considered as an alternative remedy to effectively address neurodegeneration in PD. In this report, we evaluated the restorative effect of human olfactory ecto-mesenchymal stem cells (OE-MSCs) in rat models of PD. Accordingly, human OE-MSCs were isolated and phenotypically characterized by flow cytometry and immunocytochemistry. Next, the undifferentiated OE-MSCs were unilaterally transplanted into the striatum of 6-hydroxydopamine (6-OHDA)-lesioned rat models, followed by molecular and histological analyzes as well as assessment of motor skills. Our results displayed that the grafting of OE-MSCs increased the expression of DAergic markers namely dopamine transporter (DAT), tyrosine hydroxylase (TH), nuclear receptor related-1 (Nurr1) in a 6-OHDA model compared with that of control, detected by immunohistochemical staining and western blot. Moreover, noticeable improvements in motor coordination, muscle activity and locomotor performance were observed in 6-OHDA model of PD following OE-MSCs transplantation. Taken together, our finding indicates that undifferentiated OE-MSCs might be counted as an appropriate source for cell replacement therapy particularly aimed at PD.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Actividad Motora/fisiología , Trastornos Parkinsonianos/fisiopatología , Animales , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Humanos , Masculino , Mucosa Olfatoria/citología , Ratas , Trasplante Heterólogo
16.
Neurotox Res ; 39(4): 1134-1147, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33818692

RESUMEN

Tramadol is a centrally acting synthetic opioid analgesic and SNRI (serotonin/norepinephrine reuptake-inhibitor) that structurally resembles codeine and morphine. Given the tramadol neurotoxic effect and the body of studies on the effect of tramadol on the cerebellum, this study aims to provide deeper insights into molecular and histological alterations in the cerebellar cortex related to tramadol administration. In this study, twenty-four adult male albino rats were randomly and equally divided into two groups: control and tramadol groups. The tramadol group received 50 mg/kg of tramadol daily for 3 weeks via oral gavage. The functional and structural change of the cerebellum under chronic exposure of tramadol were measured. Our data revealed that treating rats with tramadol not only lead to cerebellum atrophy but also resulted in the actuation of microgliosis, neuroinflammatoin, and apoptotic biomarkers. Our results illustrated a significant drop in VEGF (vascular endothelial growth factor) level in the tramadol group. Additionally, tramadol impaired motor coordination and neuromuscular activity. We also identified several signaling cascades chiefly related to neurodegenerative disease and energy metabolism that considerably deregulated in the cerebellum of tramadol-treated rats. Overall, the outcomes of this study suggest that tramadol administration has a neurodegeneration effect on the cerebellar cortex via several pathways consisting of microgliosis, apoptosis, necroptosis, and neuroinflammatoin.


Asunto(s)
Analgésicos Opioides/toxicidad , Cerebelo/efectos de los fármacos , Cerebelo/patología , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Tramadol/toxicidad , Analgésicos Opioides/administración & dosificación , Animales , Masculino , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Ratas , Tramadol/administración & dosificación
17.
J Chem Neuroanat ; 112: 101903, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33278568

RESUMEN

Cellular transplant therapy is one of the most common therapeutic strategies used to mitigate symptoms of neurodegenerative diseases such as Huntington's disease (HD). Briefly, the main goal of the present study was to investigate HD's motor deficits through the olfactory ecto-mesenchymals stem cells (OE-MSC) secretome. OE-MSCs were characterized immunophenotypically by the positive expression of CD73, CD90 and CD105. Also, three specific markers of OE-MSCs were obtained from the nasal cavity of human volunteers. The main features of OE-MSCs are their high proliferation, ease of harvesting and growth factor secretion. All animals were randomly assigned to three groups: control, 3-NP + vehicle treated and 3-NP + Cell groups. In both experimental groups, the subjects received intraperitoneal 3-NP (30 mg/kg) injections once a day for five consecutive days, followed by the bilateral intra-striatal implantation of OE-MSCs in the 3-NP + Cell group. Muscular function was assessed by electromyography and rotarod test, and the locomotor function was evaluated using the open field test. According to our findings, striatal transplants of OE-MSCs reduced microglial inflammatory factor, the tumor necrosis factor (TNFα) in the 3-NP + Cell group, with a significant reduction in RIP3, the markers of necroptosis in striatum. In addition to the remarkable recovery of the striatal volume after engraftment, the motor activities were enhanced in the 3-NP + cell group compared to the 3-NP + vehicle group. Taken together, our results demonstrated the in vivo advantages of OE-MSCs treatment in an HD rat model with numerous positive paracrine effects including behavioral and anatomical recovery.


Asunto(s)
Cuerpo Estriado/cirugía , Enfermedad de Huntington/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Actividad Motora/fisiología , Necroptosis/fisiología , Animales , Conducta Animal/fisiología , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Ratas , Prueba de Desempeño de Rotación con Aceleración Constante , Resultado del Tratamiento
18.
Sci Rep ; 10(1): 9788, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555202

RESUMEN

The development of easier, cheaper, and more effective synthetic strategies for hierarchical multimodal porous materials and multi-shell hollow spheres remains a challenging topic to utilize them as adsorbents in environmental applications. Here, the hierarchical architecture of multi-shell hollow micro-meso-macroporous silica with pollen-like morphology (MS-HMS-PL) has been successfully synthesized via a facile soft-templating approach and characterized for the first time. MS-HMS-PL sub-microspheres showed a trimodal hierarchical pore architecture with a high surface area of 414.5 m2 g-1, surpassing most of the previously reported multishelled hollow nanomaterials. Due to its facile preparation route and good physicochemical properties, MS-HMS-PL could be a potential candidate material in water purification, catalysis, and drug delivery. To investigate the applicability of MS-HMS-PL as an adsorbent, its adsorption performance for Cr(VI) in water was evaluated. Important adsorption factors affecting the adsorption capacity of adsorbent were systematically studied and Kinetics, isotherms, and thermodynamics parameters were computed via the non-linear fitting technique. The maximum capacity of adsorption computed from the Langmuir isotherm equation for Cr(VI) on MS-HMS-PL was 257.67 mg g-1 at 293 K and optimum conditions (pH 4.0, adsorbent dosage 5.0 mg, and contact time 90 min).

19.
J Chem Neuroanat ; 109: 101820, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32526246

RESUMEN

AIM AND BACKGROUND: Tramadol is a synthetic analogue of codeine, mostly prescribed for the alleviation of mild to moderate pains. It bears several side effects including emotional instability and anxiety. In this study, we focused on the alteration in expression of autophagic and apoptotic genes in PC-12 cells for our in vitro and structural and functional changes of striatum for our in vivo under chronic exposure of tramadol. METHODS: For in vitro side of the study, PC12 cells were exposed to tramadol (50 µM) and expression of apoptosis and autophagy genes were determined. In parallel, rats were daily treated with tramadol at doses of 50 mg/kg for three weeks for the in vivo side. Motor coordination, EMG, histopathology and gene expression were done. RESULTS: Our in vitro findings revealed that tramadol increased expression of apoptosis and autophagy genes in PC12 cells. Moreover, our in vivo results disclosed that tramadol not only provoked atrophy of rats' striatum, but also triggered microgliosis along with neuronal death in the striatum. Tramadol also reduced motor coordination and muscular activity. CONCLUSION: Altogether, our data indicated that tramadol induced neurotoxicity in the PC12 cells via apoptosis and autophagy and in striatum chiefly through activation of neuroinflammatory and apoptotic responses.


Asunto(s)
Analgésicos Opioides/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Inflamación/metabolismo , Tramadol/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Cuerpo Estriado/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Ratas , Regulación hacia Arriba/efectos de los fármacos
20.
J Hazard Mater ; 399: 123062, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32534395

RESUMEN

Herein, FeCuMg and CrCuMg layered double hydroxides (LDHs) were synthesized and their sonophotocatalytic activities toward Acid blue 113 (AB113) were compared. Sonolysis alone (only ultrasound) led to the decolorization efficiency of 13.0 %. A similar result was obtained in the case of the utilization of photolysis alone using a 10-W LED lamp (13.5 %). The adsorption process of AB113 onto both compounds was not efficient to significantly remove the target contaminant. The bandgap energy of 2.54 eV and 2.41 eV was calculated for FeCuMg and CrCuMg LDHs, respectively, indicating relatively higher photocatalytic activity of Cr-incorporated LDH than FeCuMg LDH. The sonophotocatalysis of AB113 (50 mg L-1) over CrCuMg LDH (81.1 %) was more efficient than that of FeCuMg LDH (57.3 %) within the reaction time of 60 min. Intermediate byproducts of the sonophotocatalytic decomposition of organic dye over the as-synthesized tri-metal layered sonophotocatalysts were also identified. Furthermore, the antibacterial activity of both LDHs was evaluated by the CFU technique and the MBC and MIC values were determined. The antibacterial assessment confirmed the higher antibacterial activity of CrCuMg LDH than that of FeCuMg LDH against Staphylococcus aureus (S. aureus).


Asunto(s)
Hidróxidos , Staphylococcus aureus , Adsorción , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA