Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Gut Microbes ; 16(1): 2369338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899682

RESUMEN

Gut bacteria are known to produce bacteriocins to inhibit the growth of other bacteria. Consequently, bacteriocins have attracted increased attention as potential microbiome-editing tools. In this study we examine the inhibitory spectrum of 75 class II bacteriocins against 48 representative gut microbiota species. The bacteriocins were heterologously expressed in Escherichia coli and evaluated in vitro, ex vivo and in vivo. In vitro assays revealed 22 bacteriocins to inhibit at least one species and showed selective inhibition patterns against species implicated in certain disorders and diseases. Three bacteriocins were selected for ex vivo assessment on mouse feces. Based on 16S rRNA sequencing of the cultivated feces we showed that the two bacteriocins: Actifencin (#13) and Bacteroidetocin A (#22) selectively inhibited the growth of Lactobacillus and Bacteroides, respectively. The probiotic: E. coli Nissle 1917 was engineered to express these two bacteriocins in mice. However, the selective inhibitory patterns found in the in vitro and ex vivo experiments could not be observed in vivo. Our study describes a methodology for heterologous high throughput bacteriocin expression and screening and elucidates the inhibitory patterns of class II bacteriocins on the gut microbiota.


Asunto(s)
Antibacterianos , Bacteriocinas , Escherichia coli , Heces , Microbioma Gastrointestinal , Bacteriocinas/genética , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Bacteriocinas/biosíntesis , Animales , Ratones , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antibacterianos/biosíntesis , ARN Ribosómico 16S/genética , Lactobacillus/genética , Lactobacillus/metabolismo , Lactobacillus/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/clasificación , Expresión Génica
2.
Nat Commun ; 15(1): 5323, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909053

RESUMEN

Bioethanol is a sustainable energy alternative and can contribute to global greenhouse-gas emission reductions by over 60%. Its industrial production faces various bottlenecks, including sub-optimal efficiency resulting from bacteria. Broad-spectrum removal of these contaminants results in negligible gains, suggesting that the process is shaped by ecological interactions within the microbial community. Here, we survey the microbiome across all process steps at two biorefineries, over three timepoints in a production season. Leveraging shotgun metagenomics and cultivation-based approaches, we identify beneficial bacteria and find improved outcome when yeast-to-bacteria ratios increase during fermentation. We provide a microbial gene catalogue which reveals bacteria-specific pathways associated with performance. We also show that Limosilactobacillus fermentum overgrowth lowers production, with one strain reducing yield by ~5% in laboratory fermentations, potentially due to its metabolite profile. Temperature is found to be a major driver for strain-level dynamics. Improved microbial management strategies could unlock environmental and economic gains in this US $ 60 billion industry enabling its wider adoption.


Asunto(s)
Bacterias , Etanol , Fermentación , Etanol/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Microbiota/fisiología , Biocombustibles , Metagenómica , Microbiología Industrial/métodos , Temperatura
3.
ACS Synth Biol ; 13(6): 1851-1865, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38787439

RESUMEN

Saccharomyces boulardii (Sb) is an emerging probiotic chassis for delivering biomolecules to the mammalian gut, offering unique advantages as the only eukaryotic probiotic. However, precise control over gene expression and gut residence time in Sb have remained challenging. To address this, we developed five ligand-responsive gene expression systems and repaired galactose metabolism in Sb, enabling inducible gene expression in this strain. Engineering these systems allowed us to construct AND logic gates, control the surface display of proteins, and turn on protein production in the mouse gut in response to dietary sugar. Additionally, repairing galactose metabolism expanded Sb's habitat within the intestines and resulted in galactose-responsive control over gut residence time. This work opens new avenues for precise dosing of therapeutics by Sb via control over its in vivo gene expression levels and localization within the gastrointestinal tract.


Asunto(s)
Galactosa , Probióticos , Saccharomyces boulardii , Animales , Ratones , Galactosa/metabolismo , Saccharomyces boulardii/genética , Saccharomyces boulardii/metabolismo , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Dieta
4.
Artículo en Inglés | MEDLINE | ID: mdl-38782649

RESUMEN

The rising prevalence of metabolic diseases calls for innovative treatments. Peptide-based drugs have transformed the management of conditions such as obesity and type 2 diabetes. Yet, challenges persist in oral delivery of these peptides. This review explores the potential of 'advanced microbiome therapeutics' (AMTs), which involve engineered microbes for delivery of peptides in situ, thereby enhancing their bioavailability. Preclinical work on AMTs has shown promise in treating animal models of metabolic diseases, including obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease. Outstanding challenges toward realizing the potential of AMTs involve improving peptide expression, ensuring predictable colonization control, enhancing stability, and managing safety and biocontainment concerns. Still, AMTs have potential for revolutionizing the treatment of metabolic diseases, potentially offering dynamic and personalized novel therapeutic approaches.

5.
mSystems ; 9(3): e0125723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38349131

RESUMEN

Limosilactobacillus reuteri, a probiotic microbe instrumental to human health and sustainable food production, adapts to diverse environmental shifts via dynamic gene expression. We applied the independent component analysis (ICA) to 117 RNA-seq data sets to decode its transcriptional regulatory network (TRN), identifying 35 distinct signals that modulate specific gene sets. Our findings indicate that the ICA provides a qualitative advancement and captures nuanced relationships within gene clusters that other methods may miss. This study uncovers the fundamental properties of L. reuteri's TRN and deepens our understanding of its arginine metabolism and the co-regulation of riboflavin metabolism and fatty acid conversion. It also sheds light on conditions that regulate genes within a specific biosynthetic gene cluster and allows for the speculation of the potential role of isoprenoid biosynthesis in L. reuteri's adaptive response to environmental changes. By integrating transcriptomics and machine learning, we provide a system-level understanding of L. reuteri's response mechanism to environmental fluctuations, thus setting the stage for modeling the probiotic transcriptome for applications in microbial food production. IMPORTANCE: We have studied Limosilactobacillus reuteri, a beneficial probiotic microbe that plays a significant role in our health and production of sustainable foods, a type of foods that are nutritionally dense and healthier and have low-carbon emissions compared to traditional foods. Similar to how humans adapt their lifestyles to different environments, this microbe adjusts its behavior by modulating the expression of genes. We applied machine learning to analyze large-scale data sets on how these genes behave across diverse conditions. From this, we identified 35 unique patterns demonstrating how L. reuteri adjusts its genes based on 50 unique environmental conditions (such as various sugars, salts, microbial cocultures, human milk, and fruit juice). This research helps us understand better how L. reuteri functions, especially in processes like breaking down certain nutrients and adapting to stressful changes. More importantly, with our findings, we become closer to using this knowledge to improve how we produce more sustainable and healthier foods with the help of microbes.


Asunto(s)
Limosilactobacillus reuteri , Probióticos , Humanos , Limosilactobacillus reuteri/genética , Perfilación de la Expresión Génica , Transcriptoma/genética , Aprendizaje Automático
6.
Microb Cell Fact ; 23(1): 16, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185666

RESUMEN

BACKGROUND: Interest in the use of engineered microbes to deliver therapeutic activities has increased in recent years. The probiotic yeast Saccharomyces boulardii has been investigated for production of therapeutics in the gastrointestinal tract. Well-characterised promoters are a prerequisite for robust therapeutic expression in the gut; however, S. boulardii promoters have not yet been thoroughly characterised in vitro and in vivo. RESULTS: We present a thorough characterisation of the expression activities of 12 S. boulardii promoters in vitro in glucose, fructose, sucrose, inulin and acetate, under both aerobic and anaerobic conditions, as well as in the murine gastrointestinal tract. Green fluorescent protein was used to report on promoter activity. Promoter expression was found to be carbon-source dependent, with inulin emerging as a favourable carbon source. Furthermore, relative promoter expression in vivo was highly correlated with expression in sucrose (R = 0.99). CONCLUSIONS: These findings provide insights into S. boulardii promoter activity and aid in promoter selection in future studies utilising S. boulardii to produce therapeutics in the gut.


Asunto(s)
Saccharomyces boulardii , Animales , Ratones , Saccharomyces boulardii/genética , Inulina , Saccharomyces cerevisiae , Carbono , Sacarosa , Expresión Génica
7.
J Am Chem Soc ; 146(3): 1860-1873, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38215281

RESUMEN

Biotin synthase (BioB) is a member of the Radical SAM superfamily of enzymes that catalyzes the terminal step of biotin (vitamin B7) biosynthesis, in which it inserts a sulfur atom in desthiobiotin to form a thiolane ring. How BioB accomplishes this difficult reaction has been the subject of much controversy, mainly around the source of the sulfur atom. However, it is now widely accepted that the sulfur atom inserted to form biotin stems from the sacrifice of the auxiliary 2Fe-2S cluster of BioB. Here, we bioinformatically explore the diversity of BioBs available in sequence databases and find an unexpected variation in the coordination of the auxiliary iron-sulfur cluster. After in vitro characterization, including the determination of biotin formation and representative crystal structures, we report a new type of BioB utilized by virtually all obligate anaerobic organisms. Instead of a 2Fe-2S cluster, this novel type of BioB utilizes an auxiliary 4Fe-5S cluster. Interestingly, this auxiliary 4Fe-5S cluster contains a ligated sulfide that we propose is used for biotin formation. We have termed this novel type of BioB, Type II BioB, with the E. coli 2Fe-2S cluster sacrificial BioB representing Type I. This surprisingly ubiquitous Type II BioB has implications for our understanding of the function and evolution of Fe-S clusters in enzyme catalysis, highlighting the difference in strategies between the anaerobic and aerobic world.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Hierro-Azufre , Escherichia coli/metabolismo , Biotina/química , Proteínas de Escherichia coli/química , Azufre/química , Sulfurtransferasas/metabolismo , Proteínas Hierro-Azufre/química
8.
Nat Biotechnol ; 42(2): 265-274, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37142704

RESUMEN

Antibiotic treatments have detrimental effects on the microbiome and lead to antibiotic resistance. To develop a phage therapy against a diverse range of clinically relevant Escherichia coli, we screened a library of 162 wild-type (WT) phages, identifying eight phages with broad coverage of E. coli, complementary binding to bacterial surface receptors, and the capability to stably carry inserted cargo. Selected phages were engineered with tail fibers and CRISPR-Cas machinery to specifically target E. coli. We show that engineered phages target bacteria in biofilms, reduce the emergence of phage-tolerant E. coli and out-compete their ancestral WT phages in coculture experiments. A combination of the four most complementary bacteriophages, called SNIPR001, is well tolerated in both mouse models and minipigs and reduces E. coli load in the mouse gut better than its constituent components separately. SNIPR001 is in clinical development to selectively kill E. coli, which may cause fatal infections in hematological cancer patients.


Asunto(s)
Bacteriófagos , Escherichia coli , Animales , Humanos , Ratones , Porcinos , Escherichia coli/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Porcinos Enanos , Antibacterianos
9.
J Am Acad Dermatol ; 90(3): 494-503, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37951245

RESUMEN

BACKGROUND: Orismilast is a novel oral phosphodiesterase-4 (PDE4) B/D inhibitor being investigated as a potential treatment for moderate-to-severe psoriasis. OBJECTIVE: To evaluate efficacy and safety of orismilast modified-release formulation in moderate-to-severe psoriasis. METHODS: This multicenter, randomized (1:1:1:1 to 20, 30, 40 mg orismilast or placebo, twice daily), double-blinded, placebo-controlled, parallel-group, phase 2b, 16-week, dose-ranging study evaluated orismilast in adults with moderate-to-severe plaque psoriasis (NCT05190419). Efficacy end points were analyzed using multiple imputation. RESULTS: Of 202 randomized patients, baseline characteristics were balanced across arms, except greater severe disease proportions for orismilast vs placebo. Orismilast showed significant improvements in the primary end point, percentage change in Psoriasis Area and Severity Index (PASI), from baseline to week 16 (orismilast -52.6% to -63.7% and placebo, -17.3%; all P <.001). Greater proportions receiving orismilast achieved PASI75 (39.5%-49.0%; P <.05) and PASI90 (22.0%-28.3%; P <.05 for 20 and 40 mg) vs placebo (PASI75, 16.5% and PASI90, 8.3%) at week 16. Safety findings were as expected with PDE4 inhibition; dose-dependent tolerability effects observed. LIMITATIONS: Small sample size, disease severity imbalance between groups, limited duration and diversity in study population. CONCLUSION: Orismilast demonstrated greater efficacy vs placebo and a safety profile in line with PDE4 inhibition.


Asunto(s)
Inhibidores de Fosfodiesterasa 4 , Psoriasis , Adulto , Humanos , Resultado del Tratamiento , Índice de Severidad de la Enfermedad , Método Doble Ciego , Psoriasis/diagnóstico , Psoriasis/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/efectos adversos
10.
Dermatol Ther (Heidelb) ; 13(12): 3031-3042, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924462

RESUMEN

For decades, topical corticosteroids have been the mainstay of treatment for mild-to-moderate inflammatory skin diseases, even though only short-term use is approved for these agents and systemic inflammation is not addressed. Increased understanding of the immunopathogenesis of these conditions, especially for psoriasis and atopic dermatitis, has facilitated the development of antibody-based drugs that neutralize single key cytokines or their associated receptors, such as interleukin (IL)-17A/F, IL-23, and IL-17RA in psoriasis and IL-13 and IL-4Rα in atopic dermatitis. However, oral therapy is still preferred by many patients owing to the ease of use and needle-free administration. Phosphodiesterase 4 (PDE4) inhibitors have been approved for both oral and topical use for inflammatory skin diseases. In this review, we present a summary of an emerging class of selective PDE4B/D inhibitors under clinical development and compare the differences in selectivity of this new generation of PDE4 inhibitors with the less selective currently approved PDE4 inhibitors.

11.
ACS Synth Biol ; 12(11): 3433-3442, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37827516

RESUMEN

Advanced microbiome therapeutics (AMTs) holds promise in utilizing engineered microbes such as bacteria or yeasts for innovative therapeutic applications, including the in situ delivery of therapeutic peptides. Glucagon-like peptide-1 receptor agonists, such as Exendin-4, have emerged as potential treatments for type 2 diabetes and obesity. However, current administration methods face challenges with patient adherence and low oral bioavailability. To address these limitations, researchers are exploring improved oral delivery methods for Exendin-4, including utilizing AMTs. This study engineered the probiotic yeast Saccharomyces boulardii to produce Exendin-4 (Sb-Exe4) in the gastrointestinal tract of male C57BL/6 mice to combat diet-induced obesity. The biological efficiency of Exendin-4 secreted by S. boulardii was analyzed ex vivo on isolated pancreatic islets, demonstrating induced insulin secretion. The in vivo characterization of Sb-Exe4 revealed that when combined with cold exposure (8 °C), the Sb-Exe4 yeast strain successfully suppressed appetite by 25% and promoted a 4-fold higher weight loss. This proof of concept highlights the potential of AMTs to genetically modify S. boulardii for delivering active therapeutic peptides in a precise and targeted manner. Although challenges in efficacy and regulatory approval persist, AMTs may provide a transformative platform for personalized medicine. Further research in AMTs, particularly focusing on probiotic yeasts such as S. boulardii, holds great potential for novel therapeutic possibilities and enhancing treatment outcomes in diverse metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Probióticos , Ratones , Masculino , Humanos , Animales , Exenatida/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Saccharomyces cerevisiae , Ratones Endogámicos C57BL , Péptidos/uso terapéutico , Obesidad/tratamiento farmacológico , Probióticos/uso terapéutico
12.
Mol Metab ; 78: 101823, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839774

RESUMEN

OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease globally, yet no therapies are approved. The effects of Escherichia coli Nissle 1917 expressing aldafermin, an engineered analog of the intestinal hormone FGF19, in combination with dietary change were investigated as a potential treatment for MASLD. METHODS: MASLD was induced in C57BL/6J male mice by American lifestyle-induced obesity syndrome diet and then switched to a standard chow diet for seven weeks. In addition to the dietary change, the intervention group received genetically engineered E. coli Nissle expressing aldafermin, while control groups received either E. coli Nissle vehicle or no treatment. MASLD-related plasma biomarkers were measured using an automated clinical chemistry analyzer. The liver steatosis was assessed by histology and bioimaging analysis using Fiji (ImageJ) software. The effects of the intervention in the liver were also evaluated by RNA sequencing and liquid-chromatography-based non-targeted metabolomics analysis. Pathway enrichment studies were conducted by integrating the differentially expressed genes from the transcriptomics findings with the metabolites from the metabolomics results using Ingenuity pathway analysis. RESULTS: After the intervention, E. coli Nissle expressing aldafermin along with dietary changes reduced body weight, liver steatosis, plasma aspartate aminotransferase, and plasma cholesterol levels compared to the two control groups. The integration of transcriptomics with non-targeted metabolomics analysis revealed the downregulation of amino acid metabolism and related receptor signaling pathways potentially implicated in the reduction of hepatic steatosis and insulin resistance. Moreover, the downregulation of pathways linked to lipid metabolism and changes in amino acid-related pathways suggested an overall reduction of oxidative stress in the liver. CONCLUSIONS: These data support the potential for using engineered microbial therapeutics in combination with dietary changes for managing MASLD.


Asunto(s)
Escherichia coli , Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Escherichia coli/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Dieta , Redes y Vías Metabólicas , Aminoácidos/metabolismo
13.
Sci Rep ; 13(1): 12506, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532747

RESUMEN

In this study we performed a step-wise optimization of biologically active IL-2 for delivery using E. coli Nissle 1917. Engineering of the strain was coupled with an in vitro cell assay to measure the biological activity of microbially produced IL-2 (mi-IL2). Next, we assessed the immune modulatory potential of mi-IL2 using a 3D tumor spheroid model demonstrating a strong effect on immune cell activation. Finally, we evaluated the anticancer properties of the engineered strain in a murine CT26 tumor model. The engineered strain was injected intravenously and selectively colonized tumors. The treatment was well-tolerated, and tumors of treated mice showed a modest reduction in tumor growth rate, as well as significantly elevated levels of IL-2 in the tumor. This work demonstrates a workflow for researchers interested in engineering E. coli Nissle for a new class of microbial therapy against cancer.


Asunto(s)
Inmunoterapia , Interleucina-2 , Neoplasias , Animales , Ratones , Escherichia coli , Interleucina-2/genética , Interleucina-2/farmacología , Neoplasias/terapia
14.
Food Microbiol ; 115: 104334, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567624

RESUMEN

Lactobacillaceae represent a large family of important microbes that are foundational to the food industry. Many genome sequences of Lactobacillaceae strains are now available, enabling us to conduct a comprehensive pangenome analysis of this family. We collected 3591 high-quality genomes from public sources and found that: 1) they contained enough genomes for 26 species to perform a pangenomic analysis, 2) the normalized Heap's coefficient λ (a measure of pangenome openness) was found to have an average value of 0.27 (ranging from 0.07 to 0.37), 3) the pangenome openness was correlated with the abundance and genomic location of transposons and mobilomes, 4) the pangenome for each species was divided into core, accessory, and rare genomes, that highlight the species-specific properties (such as motility and restriction-modification systems), 5) the pangenome of Lactiplantibacillus plantarum (which contained the highest number of genomes found amongst the 26 species studied) contained nine distinct phylogroups, and 6) genome mining revealed a richness of detected biosynthetic gene clusters, with functions ranging from antimicrobial and probiotic to food preservation, but ∼93% were of unknown function. This study provides the first in-depth comparative pangenomics analysis of the Lactobacillaceae family.


Asunto(s)
Genómica , Lactobacillaceae , Filogenia
15.
Pharm Res ; 40(8): 1915-1925, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37498498

RESUMEN

PURPOSE: Niclosamide is approved as an oral anthelminthic, but its low oral bioavailability hinders its medical use requiring high drug exposure outside the gastrointestinal tract. An optimized solution of niclosamide for nebulization and intranasal administration using the ethanolamine salt has been developed and tested in a Phase 1 trial. In this study we investigate the pulmonary exposure of niclosamide following administration via intravenous injection, oral administration or nebulization. METHODS: We characterized the plasma and pulmonary pharmacokinetics of three ascending doses of nebulized niclosamide in sheep, compare it to intravenous niclosamide for compartmental PK modelling, and to the human equivalent approved 2 g oral dose to investigate in the pulmonary exposure of different niclosamide delivery routes. Following a single-dose administration to five sheep, niclosamide concentrations were determined in plasma and epithelial lining fluid (ELF). Non-compartmental and compartmental modeling was used to characterize pharmacokinetic profiles. Lung function tests were performed in all dose groups. RESULTS: Administration of all niclosamide doses were well tolerated with no adverse changes in lung function tests. Plasma pharmacokinetics of nebulized niclosamide behaved dose-linear and was described by a 3-compartmental model estimating an absolute bioavailability of 86%. ELF peak concentration and area under the curve was 578 times and 71 times higher with nebulization of niclosamide relative to administration of oral niclosamide. CONCLUSIONS: Single local pulmonary administration of niclosamide via nebulization was well tolerated in sheep and resulted in substantially higher peak ELF concentration compared to the human equivalent oral 2 g dose.


Asunto(s)
Antibacterianos , Niclosamida , Humanos , Animales , Ovinos , Administración por Inhalación , Etanolamina , Pulmón , Etanolaminas
16.
Sci Rep ; 13(1): 10567, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386049

RESUMEN

Fully defined laboratory media have the advantage of allowing for reproducibility and comparability of results among different laboratories, as well as being suitable for the investigation of how different individual components affect microbial or process performance. We developed a fully defined medium that mimics sugarcane molasses, a frequently used medium in different industrial processes where yeast is cultivated. The medium, named 2SMol, builds upon a previously published semi-defined formulation and is conveniently prepared from some stock solutions: C-source, organic N, inorganic N, organic acids, trace elements, vitamins, Mg + K, and Ca. We validated the 2SMol recipe in a scaled-down sugarcane biorefinery model, comparing the physiology of Saccharomyces cerevisiae in different actual molasses-based media. We demonstrate the flexibility of the medium by investigating the effect of nitrogen availability on the ethanol yield during fermentation. Here we present in detail the development of a fully defined synthetic molasses medium and the physiology of yeast strains in this medium compared to industrial molasses. This tailor-made medium was able to satisfactorily reproduce the physiology of S. cerevisiae in industrial molasses. Thus, we hope the 2SMol formulation will be valuable to researchers both in academia and industry to obtain new insights and developments in industrial yeast biotechnology.


Asunto(s)
Saccharum , Levadura Seca , Saccharomyces cerevisiae , Melaza , Reproducibilidad de los Resultados , Medios de Cultivo , Grano Comestible
17.
Nat Commun ; 14(1): 2673, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160893

RESUMEN

Candida species overgrowth in the human gut is considered a prerequisite for invasive candidiasis, but our understanding of gut bacteria promoting or restricting this overgrowth is still limited. By integrating cross-sectional mycobiome and shotgun metagenomics data from the stool of 75 male and female cancer patients at risk but without systemic candidiasis, bacterial communities in high Candida samples display higher metabolic flexibility yet lower contributional diversity than those in low Candida samples. We develop machine learning models that use only bacterial taxa or functional relative abundances to predict the levels of Candida genus and species in an external validation cohort with an AUC of 78.6-81.1%. We propose a mechanism for intestinal Candida overgrowth based on an increase in lactate-producing bacteria, which coincides with a decrease in bacteria that regulate short chain fatty acid and oxygen levels. Under these conditions, the ability of Candida to harness lactate as a nutrient source may enable Candida to outcompete other fungi in the gut.


Asunto(s)
Candida , Neoplasias Pulmonares , Humanos , Femenino , Masculino , Estudios Transversales , Disbiosis , Ácido Láctico
18.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37028942

RESUMEN

The expanding knowledge of the health impacts of the metabolic activities of the gut microbiota reinforces the current interest in engineered probiotics. Tryptophan metabolites, in particular indole lactic acid (ILA), are attractive candidates as potential therapeutic agents. ILA is a promising compound with multiple beneficial effects, including amelioration colitis in rodent models of necrotizing enterocolitis, as well as improved infant immune system maturation. In this work, we engineered and characterized in vitro and in vivo an Escherichia coli Nissle 1917 strain that produces ILA. The 2-step metabolic pathway comprises aminotransferases native of E. coli and a dehydrogenase introduced from Bifidobacterium longum subspecies infantis. Our results show a robust engineered probiotic that produces 73.4 ± 47.2 nmol and 149 ± 123.6 nmol of ILA per gram of fecal and cecal matter, respectively, three days after colonization in a mouse model. In addition, hereby is reported an engineered-probiotic-related increase of ILA in the systemic circulation of the treated mice. This strain serves as proof of concept for the transfer of capacity to produce ILA in vivo and as ILA emerges as a potent microbial metabolite against gastrointestinal inflammation, further development of this strain offers efficient options for ILA-focused therapeutic interventions in situ.


Asunto(s)
Colitis , Probióticos , Ratones , Animales , Escherichia coli/genética , Colitis/terapia , Colitis/microbiología , Heces/microbiología , Ciego , Indoles
19.
Front Bioeng Biotechnol ; 11: 1136095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890914

RESUMEN

The human gastrointestinal tract is a complex and dynamic environment, playing a crucial role in human health. Microorganisms engineered to express a therapeutic activity have emerged as a novel modality to manage numerous diseases. Such advanced microbiome therapeutics (AMTs) must be contained within the treated individual. Hence safe and robust biocontainment strategies are required to prevent the proliferation of microbes outside the treated individual. Here we present the first biocontainment strategy for a probiotic yeast, demonstrating a multi-layered strategy combining an auxotrophic and environmental-sensitive strategy. We knocked out the genes THI6 and BTS1, causing thiamine auxotrophy and increased sensitivity to cold, respectively. The biocontained Saccharomyces boulardii showed restricted growth in the absence of thiamine above 1 ng/ml and exhibited a severe growth defect at temperatures below 20°C. The biocontained strain was well tolerated and viable in mice and demonstrated equal efficiency in peptide production as the ancestral non-biocontained strain. In combination, the data support that thi6∆ and bts1∆ enable biocontainment of S. boulardii, which could be a relevant chassis for future yeast-based AMTs.

20.
Metab Eng ; 76: 179-192, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738854

RESUMEN

Although strain tolerance to high product concentrations is a barrier to the economically viable biomanufacturing of industrial chemicals, chemical tolerance mechanisms are often unknown. To reveal tolerance mechanisms, an automated platform was utilized to evolve Escherichia coli to grow optimally in the presence of 11 industrial chemicals (1,2-propanediol, 2,3-butanediol, glutarate, adipate, putrescine, hexamethylenediamine, butanol, isobutyrate, coumarate, octanoate, hexanoate), reaching tolerance at concentrations 60%-400% higher than initial toxic levels. Sequencing genomes of 223 isolates from 89 populations, reverse engineering, and cross-compound tolerance profiling were employed to uncover tolerance mechanisms. We show that: 1) cells are tolerized via frequent mutation of membrane transporters or cell wall-associated proteins (e.g., ProV, KgtP, SapB, NagA, NagC, MreB), transcription and translation machineries (e.g., RpoA, RpoB, RpoC, RpsA, RpsG, NusA, Rho), stress signaling proteins (e.g., RelA, SspA, SpoT, YobF), and for certain chemicals, regulators and enzymes in metabolism (e.g., MetJ, NadR, GudD, PurT); 2) osmotic stress plays a significant role in tolerance when chemical concentrations exceed a general threshold and mutated genes frequently overlap with those enabling chemical tolerance in membrane transporters and cell wall-associated proteins; 3) tolerization to a specific chemical generally improves tolerance to structurally similar compounds whereas a tradeoff can occur on dissimilar chemicals, and 4) using pre-tolerized starting isolates can hugely enhance the subsequent production of chemicals when a production pathway is inserted in many, but not all, evolved tolerized host strains, underpinning the need for evolving multiple parallel populations. Taken as a whole, this study provides a comprehensive genotype-phenotype map based on identified mutations and growth phenotypes for 223 chemical tolerant isolates.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , 1-Butanol/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas Represoras/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...