Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Physiol ; 598(19): 4209-4223, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32617993

RESUMEN

KEY POINTS: Alzheimer's disease (AD) patients and transgenic mice have beta-amyloid (Aß) aggregation in the gastrointestinal (GI) tract. It is possible that Aß from the periphery contributes to the load of Aß in the brain, as Aß has prion-like properties. The present investigations demonstrate that Aß injected into the GI tract of ICR mice is internalised into enteric cholinergic neurons; at 1 month, administration of Aß into the body of the stomach and the proximal colon was observed to partly redistribute to the fundus and jejunum; at 1 year, vagal and cerebral ß-amyloidosis was present, and mice exhibited GI dysfunction and cognitive deficits. These data reveal a previously undiscovered mechanism that potentially contributes to the development of AD. ABSTRACT: Alzheimer's disease (AD) is the most common age-related cause of dementia, characterised by extracellular beta-amyloid (Aß) plaques and intracellular phosphorylated tau tangles in the brain. Aß deposits have also been observed in the gastrointestinal (GI) tract of AD patients and transgenic mice, with overexpression of amyloid precursor protein. In the present studies, we investigate whether intra-GI administration of Aß can potentially induce amyloidosis in the central nervous system (CNS) and AD-related pathology such as dementia. We micro-injected Aß1-42 oligomers (4 µg per site, five sites) or vehicle (saline, 5 µl) into the gastric wall of ICR mice under general anaesthesia. Immunofluorescence staining and in vivo imaging showed that HiLyte Fluor 555-labelled Aß1-42 had migrated within 3 h via the submucosa to nearby areas and was internalised into cholinergic neurons. At 1 month, HiLyte Fluor 555-labelled Aß1-42 in the body of the stomach and proximal colon had partly re-distributed to the fundus and jejunum. At 1 year, the jejunum showed functional alterations in neuromuscular coupling (P < 0.001), and Aß deposits were present in the vagus and brain, with animals exhibiting cognitive impairments in the Y-maze spontaneous alteration test (P < 0.001) and the novel object recognition test (P < 0.001). We found that enteric Aß oligomers induce an alteration in gastric function, amyloidosis in the CNS, and AD-like dementia via vagal mechanisms. Our results suggest that Aß load is likely to occur initially in the GI tract and may translocate to the brain, opening the possibility of new strategies for the early diagnosis and prevention of AD.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/inducido químicamente , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Tracto Gastrointestinal/metabolismo , Humanos , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos
2.
Food Chem Toxicol ; 141: 111396, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32417364

RESUMEN

BACKGROUND: In Alzheimer's diseases, beta-amyloid may act as prion-like protein and migrate from the gastrointestinal tract towards the brain. Soy flavonoids have been identified as neuroprotective against cognitive loss in human. Diet with soy flavonoids may be used to slow down the progression of Alzheimer's diseases. METHODS AND RESULTS: We performed in-vitro tissue culture experiments using myenteric plexus longitudinal muscle layers isolated from the ileum and colon of ICR mice. Beta-amyloid can be taken up into myenteric neurons and induce neuron degeneration, which is protected by flavonoids compounds, including daidzein, genistein, glycitein and luteolin. We also administered oligomeric beta-amyloid (1-42) (total dose: 8 µg) into the gastrointestinal walls of ICR mice and conducted memory tests and gastrointestinal function assessments after 6 and 12 months. Mice treated with beta-amyloid exhibited minor learning deficits in a T-maze memory test at 6 months and significant memory impairment in a novel object recognition task at 12 months. These impairments were prevented by soy flavonoids. Tracking studies performed using fluorescently tagged beta-amyloid found that, beta-amyloid injected at the stomach can aggregate within the layer of myenteric neurons and migrate to the jejunum or via the vagus nerves to the brain after 1 month. Reductions in the gastrointestinal tissue weight and the spontaneous ileal contraction frequency were also observed at 6 and 12 months, respectively. CONCLUSION: Our findings indicate that beta-amyloid can migrate from the gastrointestinal tract to the brain to induce cognitive impairments. Furthermore, chronic soy flavonoids in drinking water have protective actions.


Asunto(s)
Péptidos beta-Amiloides/administración & dosificación , Trastornos del Conocimiento/prevención & control , Flavonoides/farmacología , Glycine max/metabolismo , Animales , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Tracto Gastrointestinal , Humanos , Ratones , Ratones Endogámicos ICR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...