Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Chem Sci ; 13(16): 4482-4489, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35656138

RESUMEN

Amyloid proteins that undergo self-assembly to form insoluble fibrillar aggregates have attracted much attention due to their role in biological and pathological significance in amyloidosis. This study aims to understand the amyloid aggregation dynamics of insulin (INS) in H2O using two-dimensional infrared (2D-IR) spectroscopy. Conventional IR studies have been performed in D2O to avoid spectral congestion despite distinct H-D isotope effects. We observed a slowdown of the INS fibrillation process in D2O compared to that in H2O. The 2D-IR results reveal that different quaternary structures of INS at the onset of the nucleation phase caused the distinct fibrillation pathways of INS in H2O and D2O. A few different biophysical analysis, including solution-phase small-angle X-ray scattering combined with molecular dynamics simulations and other spectroscopic techniques, support our 2D-IR investigation results, providing insight into mechanistic details of distinct structural transition dynamics of INS in water. We found the delayed structural transition in D2O is due to the kinetic isotope effect at an early stage of fibrillation of INS in D2O, i.e., enhanced dimer formation of INS in D2O. Our 2D-IR and biophysical analysis provide insight into mechanistic details of structural transition dynamics of INS in water. This study demonstrates an innovative 2D-IR approach for studying protein dynamics in H2O, which will open the way for observing protein dynamics under biological conditions without IR spectroscopic interference by water vibrations.

2.
J Am Chem Soc ; 144(4): 1603-1611, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35073692

RESUMEN

Several point mutations can modulate protein structure and dynamics, leading to different natures. Especially in the case of amyloidogenic proteins closely related to neurodegenerative diseases, structural changes originating from point mutations can affect fibrillation kinetics. Herein, we rationally designed mutant candidates to inhibit the fibrillation process of amyloid-ß with its point mutants through multistep in silico analyses. Our results showed that the designed mutants induced kinetic self-assembly suppression and reduced the toxicity of the aggregate. A multidisciplinary biophysical approach with small-angle X-ray scattering, ion mobility-mass spectrometry, mass spectrometry, and additional in silico experiments was performed to reveal the structural basis associated with the inhibition of fibril formation. The structure-based design of the mutants with suppressed self-assembly performed in this study could provide a different perspective for modulating amyloid aggregation based on the structural understanding of the intrinsically disordered proteins.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dimerización , Humanos , Espectrometría de Movilidad Iónica , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacología , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Solubilidad , Difracción de Rayos X
3.
J Am Soc Mass Spectrom ; 32(10): 2528-2535, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34463503

RESUMEN

Hemoglobin (Hb) is a major oxygen-transporting protein with allosteric properties reflected in the structural changes that accompany binding of O2. Glycated hemoglobin (GHb), which is a minor component of human red cell hemolysate, is generated by a nonenzymatic reaction between glucose and hemoglobin. Due to the long lifetime of human erythrocytes (∼120 days), GHb is widely used as a reliable biomarker for monitoring long-term glucose control in diabetic patients. Although the structure of GHb differs from that of Hb, structural changes relating to the oxygen affinity of these proteins remain incompletely understood. In this study, the oxygen-binding kinetics of Hb and GHb are evaluated, and their structural dynamics are investigated using solution small-angle X-ray scattering (SAXS), electrospray ionization mass spectrometry equipped with ion mobility spectrometry (ESI-IM-MS), and molecular dynamic (MD) simulations to understand the impact of structural alteration on their oxygen-binding properties. Our results show that the oxygen-binding kinetics of GHb are diminished relative to those of Hb. ESI-IM-MS reveals structural differences between Hb and GHb, which indicate the preference of GHb for a more compact structure in the gas phase relative to Hb. MD simulations also reveal an enhancement of intramolecular interactions upon glycation of Hb. Therefore, the more rigid structure of GHb makes the conformational changes that facilitate oxygen capture more difficult creating a delay in the oxygen-binding process. Our multiple biophysical approaches provide a better understanding of the allosteric properties of hemoglobin that are reflected in the structural alterations accompanying oxygen binding.


Asunto(s)
Hemoglobinas , Espectrometría de Movilidad Iónica/métodos , Oxígeno/sangre , Espectrometría de Masa por Ionización de Electrospray/métodos , Diabetes Mellitus/metabolismo , Hemoglobina Glucada/análisis , Hemoglobina Glucada/química , Hemoglobinas/análisis , Hemoglobinas/química , Humanos
4.
Mass Spectrom Rev ; 38(6): 483-500, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31021441

RESUMEN

Flexible structures of intrinsically disordered proteins (IDPs) are crucial for versatile functions in living organisms, which involve interaction with diverse partners. Electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) has been widely applied for structural characterization of apo-state and ligand-associated IDPs via two-dimensional separation in the gas phase. Gas-phase IDP structures have been regarded as kinetically trapped states originated from conformational features in solution. However, an implication of the states remains elusive in the structural characterization of IDPs, because it is unclear what structural property of IDPs is preserved. Recent studies have indicated that the conformational features of IDPs in solution are not fully reproduced in the gas phase. Nevertheless, the molecular interactions captured in the gas phase amplify the structural differences between IDP conformers. Therefore, an IDP conformational change that is not observed in solution is observable in the gas-phase structures obtained by ESI-IM-MS. Herein, we have presented up-to-date researches on the key implications of kinetically trapped states in the gas phase with a brief summary of the structural dynamics of IDPs in ESI-IM-MS.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Animales , Humanos , Proteínas Intrínsecamente Desordenadas/aislamiento & purificación , Iones/química , Cinética , Ligandos , Metales/química , Modelos Moleculares , Simulación de Dinámica Molecular , Transición de Fase , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA