Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; : e202401785, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221717

RESUMEN

Pluchea indica (L.) Less. is a medicinal plant native to Asia. Traditionally, it is known for numerous traditional uses, such as treatments for fever, cough, and digestive issues. The present investigation aims to determine the chemical compositions of essential oils from its fresh leaves and stem barks. By using hydro-distillation and the GC-FID/MS (gas chromatography-flame ionization detection/mass spectrometry) analysis, the studied samples were dominated by sesquiterpene hydrocarbons (76.8-82.2%) and their oxygenated derivatives (8.4-19.0%). ß-Selinene (42.0-43.5%) and silphinene (21.1-22.9%) were the main compounds. Significantly, the stem bark essential oil strongly monitored the growth of four cancer cell lines K562, HeLa, HepG2, and MCF-7 with IC50 values of 2.89-7.34 µg/mL. Both studied samples showed strong anti-inflammatory activity against NO (nitric oxide) production with IC50 values of 21.81-23.18 µg/mL. The studied sample also exhibited antimicrobial activity at different levels. The molecular docking study revealed that ß-selinene exhibited the strongest binding affinity for all four cancer-related protein targets: epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), Abelson tyrosine-protein kinase 1 (ABL1), and phosphatidylinositol 3-kinase (PI3K-α). The ADMET profiles of the major compounds were also predicted to provide insights for further research considerations.

2.
Front Chem ; 12: 1424017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170867

RESUMEN

The spread of drug-resistant tuberculosis strains has become a significant economic burden globally. To tackle this challenge, there is a need to develop new drugs that target specific mycobacterial enzymes. Among these enzymes, InhA, which is crucial for the survival of Mycobacterium tuberculosis, is a key target for drug development. Herein, 24 compounds were synthesized by merging 4-carboxyquinoline with triazole motifs. These molecules were then tested for their effectiveness against different strains of tuberculosis, including M. bovis BCG, M. tuberculosis, and M. abscessus. Additionally, their ability to inhibit the InhA enzyme was also evaluated. Several molecules showed potential as inhibitors of M. tuberculosis. Compound 5n displayed the highest efficacy with a MIC value of 12.5 µg/mL. Compounds 5g, 5i, and 5n exhibited inhibitory effects on InhA. Notably, 5n showed significant activity compared to the reference drug Isoniazid. Molecular docking analysis revealed interactions between these molecules and their target enzyme. Additionally, the molecular dynamic simulations confirmed the stability of the complexes formed by quinoline-triazole conjugate 5n with the InhA. Finally, 5n underwent in silico analysis to predict its ADME characteristics. These findings provide promising insights for developing novel small compounds that are safe and effective for the global fight against tuberculosis.

3.
Chem Biodivers ; : e202401145, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102300

RESUMEN

The current research describes a phytochemical analysis and antimicrobial activity of essential oils extracted from the leaves of two Vietnamese Annonaceae species Goniothalamus yunnanensis W.T.Wang and G. touranensis Ast. By the GC-FID/MS (gas chromatography-flame ionization detection/mass spectrometry) analyses, sesquiterpene hydrocarbons accounted for the highest percentage of 68.22% in G. yunnanensis leaf essential oil with bicyclogermacrene (31.03%) and (E)-caryophyllene (21.12%) being the main compounds. G. touranensis leaf essential oil was dominated by monoterpene hydrocarbons (57.08%) with p-cymene (19.95%) and α-pinene (16.82%) being the major compounds. Two oil samples showed strong antibacterial effects on the Gram-positive bacteria Enterococcus faecalis ATCC51299, Staphylococcus aureus ATCC29213, and Bacillus cereus ATCC11778 with the MIC values of 16-64 µg/mL. They also inhibited the growth of the yeast Candida albicans ATCC 60193 with the same MIC value of 128 µg/mL. Both two oil samples showed strong mosquito larvicidal activity against four-instar larvae of Aedes aegypti and Ae. albopictus with the 24-h LC50 values of 16.75-27.60 µg/mL and 24-h LC90 values of 24.31-46.18 µg/mL. Docking results indicated that bicyclogermacrene and p-cymene exhibited the highest ΔG (binding affinity) values of -8.208 and -6.799 kcal/mol with the olfactory binding proteins (OBPs) of Ae. aegypti and Ae. albopictus, respectively.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38985315

RESUMEN

Bruceines A-L are among the quassinoid representatives found in the medicinal plant Brucea javanica (L.). An overview of their pharmacological activities is still unknown. The given research deals with highlights in their pharmacological result, molecular mechanism of action, synthetic progress, and pharmacokinetics. From previous evidence, bruceine derivatives are potential agents for anticancer treatments, as well as they are appropriate to treat inflammation, diabetes, and parasitic infections, and protect the neurons, kidneys, and lungs. Cytokine inhibitions, oxidative stress responses, and various signaling pathways, such as MAPK (mitogen-activated protein kinase) and NF-κB (nuclear factor-kappa B), have been proposed as the underlying mechanisms of action. Synthetic approaches to synthesize new derivatives with enhancement activities are based on free hydroxyl group modifications. Bruceines seem to be promptly absorbed by both oral and intravenous administrations, but their bioavailability is not high (less than 6%). Pre-clinical and clinical studies to prove their anticancer potential and other activities are urgent. Structural modifications, nano-combinations, and synergistic effects are necessary.

5.
Fitoterapia ; 177: 106121, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992476

RESUMEN

BACKGROUND: Myrsine (the family Primulaceae) contains flowering species. Pharmacologically, the plants of this genus belong to a list of medicinal plants that induce infectious and inflammatory treatments. There are no scientific publications that review phytochemistry and pharmacological activities. OBJECTIVE: The compilation and classification of phytochemicals, chromatographic information, essential oils, and pharmacological reviews are the ultimate aim. METHODS: References on phytochemical and pharmacological investigations of Myrsine species were collected from various sources, such as Google Scholar, PubMed, and Web of Science from the 1990s to present. The main keyword "Myrsine" was used alone or in combination with others to search for references. RESULTS: Chromatographic procedure of Myrsine extracts led to the purification of 134 compounds. Flavonoids, mono-phenols, saponins, quinones, megastigmanes, and lignans were the main phytochemical classes. Myrsine Volatile compounds are monoterpenoids, sesquiterpenoids, and aliphatic compounds. Myrsine constituents established a widespread panel of pharmacological activities, such as cytotoxicity, antioxidant, antimicrobial, anti-parasite, tyrosine inhibition, and hepatoprotection, especially anti-inflammation. Novel flavonoids myrsininones A-B are better than the standard triclosan against bacteria Staphylococcus warneri, S. mutan, S. sanguis, and Actinomyces naeslundii. M. seguinii aerial part ethanolic extract inhibited LPS (lipopolysaccharide)-stimulated inflammatory Raw 264.7 cells via Src/Syk/NF-κB (sarcoma kinase/spleen tyrosine kinase/ nuclear factor-kappa B) and IRAK-1/AP-1 (interleukin-1 receptor-associated kinase-1/activating protein-1) signaling inhibition. Generally, Myrsine plant extracts showed no toxicity. CONCLUSION: Myrsine constituents are good antimicrobial, antioxidative, and anti-inflammatory agents. However, the majority of earlier research focuses on the pharmacological analyses of M. africana. Thus, comprehensive findings for the remaining species are needed.


Asunto(s)
Fitoquímicos , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Plantas Medicinales/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Estructura Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación
6.
IUBMB Life ; 76(9): 745-759, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38708996

RESUMEN

Pancreatic cancer is one of the deadliest diseases with a poor prognosis and a five-survival rate. The STAT3 pathway is hyperactivated which contributes to the sustained proliferative signals in pancreatic cancer cells. We have isolated kaempferide (KF), an O-methylated flavonol, from the green propolis of Mimosa tenuiflora and examined its effect on two forms of cell death namely, apoptosis and paraptosis. KF significantly increased the cleavage of caspase-3 and PARP. It also downmodulated the expression of Alix (an intracellular inhibitor of paraptosis) and increased the expression of CHOP and ATF4 (transcription factors that promote paraptosis) indicating that KF promotes apoptosis as well as paraptosis. KF also increased intracellular reactive oxygen species (ROS) suggesting the perturbance of the redox state. N-acetylcysteine reverted the apoptosis- and paraptosis-inducing effects of KF. Some ROS inducers are known to suppress the STAT3 pathway and investigation revealed that KF downmodulates STAT3 and its upstream kinases (JAK1, JAK2, and Src). Additionally, KF also elevated the expression of SHP-1, a tyrosine phosphatase which is involved in the negative modulation of the STAT3 pathway. Knockdown of SHP-1 prevented KF-driven STAT3 inhibition. Altogether, KF has been identified as a promoter of apoptosis and paraptosis in pancreatic cancer cells through the elevation of ROS generation and SHP-1 expression.


Asunto(s)
Apoptosis , Neoplasias Pancreáticas , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Especies Reactivas de Oxígeno , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Transducción de Señal/efectos de los fármacos , Quempferoles/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Paraptosis
7.
Nat Prod Res ; : 1-7, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771007

RESUMEN

Phytochemical study of the leaves of Styrax annamensis Guillaumin resulted in the isolation of a new natural product egonol-3''-sulphate (1), and two new derivatives egonol-3-methyl-D-galactopyranoside (2) and 7-methoxy-2-(3',4'-methylenedioxyphenyl)-benzofuran-5-carboxamide (3). Their chemical structures were -elucidated by spectroscopic data. Compounds 1 and 3 significantly established a great role for the chemotaxonomic aspect. Compound 1 showed cytotoxicity against four cancer cell lines KB, HepG2, Lu, and MCF7 with the IC50 values of 84.90-101.69 µg/mL, and exhibited acetylcholinesterase (AChE) inhibitory activity with the IC50 value of 97.08 µg/mL.

8.
Planta Med ; 90(6): 454-468, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599606

RESUMEN

Some in vitro and in vivo evidence is consistent with the cardiovascular beneficial activity of propolis. As the single actors responsible for this effect have never been identified, an in-depth investigation of flavonoids isolated from the green propolis of the Caatinga Mimosa tenuiflora was performed and their mechanism of action was described. A comprehensive electrophysiology, functional, and molecular docking approach was applied. Most flavanones and flavones were effective CaV1.2 channel blockers with a potency order of (2S)-sakuranetin > eriodictyol-7,3'-methyl ether > quercetin 3-methyl ether > 5,4'-dihydroxy-6,7-dimethoxyflavanone > santin > axillarin > penduletin > kumatakenin, ermanin and viscosine being weak or modest stimulators. Except for eriodictyol 5-O-methyl ether, all the flavonoids were also effective spasmolytic agents of vascular rings, kumatakenin and viscosine also showing an endothelium-dependent activity. (2S)-Sakuranetin also stimulated KCa1.1 channels both in single myocytes and vascular rings. In silico analysis provided interesting insights into the mode of action of (2S)-sakuranetin within both CaV1.2 and KCa1.1 channels. The green propolis of the Caatinga Mimosa tenuiflora is a valuable source of multi-target vasoactive flavonoids: this evidence reinforces its nutraceutical value in the cardiovascular disease prevention arena.


Asunto(s)
Flavonoides , Simulación del Acoplamiento Molecular , Própolis , Vasodilatadores , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/química , Vasodilatadores/farmacología , Vasodilatadores/aislamiento & purificación , Vasodilatadores/química , Animales , Própolis/química , Própolis/farmacología , Mimosa/química , Masculino , Ratas , Fitoalexinas
9.
J Pharm Pharmacol ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579142

RESUMEN

OBJECTIVES: To get a better understanding of the scientific values of flavone scutellarein (SCT), and to encourage its applications in human health, the current review systematically summarizes the natural observation, biosynthesis, synthesis, pharmacology, pharmacokinetics, and recent synthetic advances. KEY FINDINGS: Scientific sources to search for references included Google Scholar, Scopus, Web of Science, PubMed, Sci-Finder, and journal websites. The references have been collected from the 1970s to the present. "Scutellarein" is the most meaningful keyword to search for publications, in which it was used alone or in combination with other keywords. SUMMARYS: SCT as a hydrophobic flavonoid can be found in various medicinal plants of the families Lamiaceae, Compositae, and Verbenaceae. Flavone SCT has drawn much interest due to its wide pharmacological effects, such as anticancer, anti-inflammation, antioxidant, antiobesity, and vasorelaxant. The SCT treatments also possessed a lot of positive results in the neuron, liver, heart, lung, kidney, bone, and skin protective experiments, and human sperm function enhancement. Its underlying mechanism of action may relate to the apoptotic program and cytokine inhibition by regulating a panel of the signaling pathway, e.g., NF-κB (nuclear factor kappa B)/MAPK (mitogen-activated protein kinase), IκBa (nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitors alpha)/NF-κB, TRAF2 (tumor necrosis factor receptor-associated factor 2)/NF-κB, and PTEN (phosphatase and tension homologue deleted on chromosome 10)/Akt (protein kinase B)/NF-κB. In addition, the metabolic actions and synthetic derivative promotions of SCT were mostly based on the substitution of hydroxyl groups. Collectively, the studies that aim to highlight the role of scutellarein in preclinical and clinical treatments are urgently needed. More and more experiments to improve its bioavailability are expected.

10.
Arch Pharm (Weinheim) ; 357(7): e2400092, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38501886

RESUMEN

Fraxetin is a bioactive molecule present in various natural plants, especially Cortex Fraxini. Evidenced outcomes in phytochemical and biological analyses for this agent are now available in the literature, but an insightful review is yet unknown. The goal of the current research is to offer a panoramic illustration of natural observation, biosynthesis, synthesis, pharmacology, and pharmacokinetics for fraxetin. Esculetin and ferulic acid acted as precursors in the enzymatic biosynthetic route, whereas fraxetin could be easily synthesized from simple phenols. A great deal of interest was obtained in using this molecule for pharmacological targets. Herein, its pharmacological value included anticancer, antioxidative, anti-inflammatory, antidiabetic, antiobesity, and antimicrobial activities, as well as the protection of the liver, neurons, heart, bone, lung, kidney, and others. Anticancer activity may involve the inhibition of proliferation, invasion, and migration, together with apoptotic induction. Health benefits from this molecule were deduced from its ability to suppress cytokines and protect the immune syndrome. Various signaling pathways, such as Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3), phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt), nuclear factor kappa B (NF-κB)/NLRP3, Akt/AMPK, have been proposed for in vitro and in vivo mechanisms of action. Fraxetin is highly distributed to rat plasma and several organs. However, more pharmacokinetic studies to improve its bioavailability are needed since its solubility in water is still limited.


Asunto(s)
Cumarinas , Humanos , Animales , Cumarinas/farmacología , Cumarinas/química , Cumarinas/síntesis química , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química
11.
Eur J Pharmacol ; 967: 176400, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331336

RESUMEN

In the search for novel, bi-functional compounds acting as CaV1.2 channel blockers and K+ channel stimulators, which represent an effective therapy for hypertension, 3,3'-O-dimethylquercetin was isolated for the first time from Brazilian Caatinga green propolis. Its effects were investigated through electrophysiological, functional, and computational approaches. In rat tail artery myocytes, 3,3'-O-dimethylquercetin blocked Ba2+ currents through CaV1.2 channels (IBa1.2) in a concentration-dependent manner, with the inhibition being reversed upon washout. The compound also shifted the voltage dependence of the steady-state inactivation curve to more negative potentials without affecting the slope of the inactivation and activation curves. Furthermore, the flavonoid stimulated KCa1.1 channel currents (IKCa1.1). In silico simulations provided additional evidence for the binding of 3,3'-O-dimethylquercetin to KCa1.1 and CaV1.2 channels and elucidated its mechanism of action. In depolarized rat tail artery rings, the flavonoid induced a concentration-dependent relaxation. Moreover, in rat aorta rings its antispasmodic effect was inversely related to the transmembrane K+ gradient. In conclusion, 3,3'-O-dimethylquercetin demonstrates effective in vitro vasodilatory properties, encouraging the exploration of its scaffold to develop novel derivatives for potential use in the treatment of hypertension.


Asunto(s)
Mimosa , Própolis , Ratas , Animales , Vasodilatadores/farmacología , Vasodilatadores/metabolismo , Mimosa/metabolismo , Própolis/farmacología , Músculo Liso Vascular , Miocitos del Músculo Liso , Flavonoides/farmacología , Canales de Calcio Tipo L/metabolismo
12.
Bioorg Chem ; 144: 107138, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262087

RESUMEN

Tuberculosis (TB) is a global issue that poses a significant economic burden as a result of the ongoing emergence of drug-resistant strains. The urgent requirement for the development of novel antitubercular drugs can be addressed by targeting specific enzymes. One such enzyme, Mycobacterium tuberculosis (MTB) enoyl-acyl carrier protein (enoyl-ACP) reductase (InhA), plays a crucial role in the survival of the MTB bacterium. In this research study, a series of hybrid compounds combining quinolone and isatin were synthesized and assessed for their effectiveness against MTB, as well as their ability to inhibit the activity of the InhA enzyme in this bacterium. Among the compounds tested, 7a and 5g exhibited the most potent inhibitory activity against MTB, with minimum inhibitory concentration (MIC) values of 55 and 62.5 µg/mL, respectively. These compounds were further evaluated for their inhibitory effects on InhA and demonstrated significant activity compared to the reference drug Isoniazid (INH), with IC50 values of 0.35 ± 0.01 and 1.56 ± 0.06 µM, respectively. Molecular docking studies investigated the interactions between compounds 7a and 5g and the target enzyme, revealing hydrophobic contacts with important amino acid residues in the active site. To further confirm the stability of the complexes formed by 5g and 7a with the target enzyme, molecular dynamic simulations were employed, which demonstrated that both compounds 7a and 5g undergo minor structural changes and remain nearly stable throughout the simulated process, as assessed through RMSD, RMSF, and Rg values.


Asunto(s)
Isatina , Mycobacterium tuberculosis , Quinolinas , Humanos , Proteína Transportadora de Acilo/farmacología , Isatina/farmacología , Simulación del Acoplamiento Molecular , Oxidorreductasas/metabolismo , Antituberculosos/farmacología , Antituberculosos/química , Pruebas de Sensibilidad Microbiana , Quinolinas/farmacología , Proteínas Bacterianas/metabolismo
13.
Curr Top Med Chem ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284736

RESUMEN

BACKGROUND: Albatrellus confluens is one of the representative species in the Polyporaceae family. Its major mero terpenoid grifolin and related compounds have the potential for drug applications. OBJECTIVE: The current study aims to briefly provide an insightful view of the phytochemistry, biosynthesis, synthesis, and pharmacology of A. confluens metabolites. METHODS: Data collection was performed using electronic resources, e.g., Google Scholar, PubMed, and Sci-Finder from the 1990s to the present, while Albatrellus confluens is the most meaningful keyword in the search for publications. The Latin name Albatrellus confluens (Alb. & Schwein.) Kotl. & Pouzar is in accordance with the name listing on www.mycobank.org. RESULTS: By chromatography column procedures, it indicated that A. confluens species was associated with the presence of 57 secondary metabolites, in which nitrogenous compounds, meroterpenoids, polyene pyrones, and polyesters can be seen as the main phytochemical classes. L-isoleucine was the parent molecule in biosynthetic and synthetic steps of A. confluens nitrogenous compounds. Numerous experiments revealed that A. confluens isolated compounds have a variety of pharmacological activities, such as anticancer, anti-inflammatory, vasorelaxant, and neuroprotective and skin whitening activities. Some isolates become potential cancer inhibitors. Grifolin induced apoptosis and promoted cell cycle arrest in A2780 ovarian cancer cells via the inactivation of the ERK1/2/Akt signaling pathway. Grifolic acid caused osteosarcoma cancer cell deaths by inhibiting NADH generation and ATP production without obvious toxicity. Neoalbaconol caused apoptosis and necroptosis in mice bearing nasopharyngeal C666-1 cancer cells via PDK1-PI3K/Akt signaling inhibition. CONCLUSION: The continuation of chromatographic separation and biomedical research is expected. Modern biological assays for explaining the pharmacological values of A. confluens constituents are warranted. Toxicological and pharmacokinetic assessments are urgently needed.

14.
Nat Prod Res ; : 1-7, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225908

RESUMEN

Cytotoxic, antioxidative, and antimicrobial activities of Camellia annamensis, and its chemical compositions were first provided in the current study. Phenolic contents in the methanol extracts of its leaves and flowers were 222.73 ± 0.09 and 64.44 ± 0.08 mg GAE/g extract, whereas flavonoid contents in these parts were 108.80 ± 0.28 and 131.26 ± 0.39 mg rutin/g extract, respectively. By using HPLC-DAD analysis, gallic acid (43.72 ± 0.09 - 81.89 ± 1.83 mg/g) and (-)-epigallocatechin gallate (67.31 ± 1.26 - 70.68 ± 7.82 mg/g) were identified as the major compounds. C. annamensis leaf and flower extracts were moderately cytotoxic against A549, HT-29, SK-Mel-2, MCF-7, HepG2, HeLa, and MKN-7. Particularly, they are better than the standards trolox (IC50 7.57 ± 0.23 µg/mL) in lipid peroxidation inhibitory evaluation, and streptomycin (IC50/MIC = 45.34-50.34/128-256 µg/mL) in antimicrobial assay against the Gram-positive bacteria Enterococcus faecalis ATCC299212, Staphylococcus aureus ATCC25923, and the Gram-negative bacterium Salmonella enterica ATCC13076.

15.
Molecules ; 28(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005226

RESUMEN

The essential oils of five Vietnamese Syzygium species (Syzygium levinei, S. acuminatissimum, S. vestitum, S. cumini, and S. buxifolium) were first hydro-distilled and analyzed using GC-FID/MS (gas chromatography-flame ionization detection/mass spectrometry). Monoterpene hydrocarbons, sesquiterpene hydrocarbons, and oxygenated sesquiterpenoids were the main chemical classes in these oils. All these essential oils showed good-excellent antimicrobial activities against Gram-positive bacteria Enterococcus faecalis, Staphylococcus aureus, and Bacillus cereus, and the yeast Candida albicans. S. levinei leaf essential oil, rich in bicyclogermacrene (25.3%), (E)-ß-elemene (12.2%), (E)-caryophyllene (8.2%), and ß-selinene (7.4%), as well as S. acuminatissimum fruit essential oil containing (E)-caryophyllene (14.2%), α-pinene (12.1%), caryophyllene oxide (10.9%), ß-selinene (10.8%), α-selinene (8.0%), and α-humulene (5.7%), established the same MIC value of 8 µg/mL against E. faecalis and B. cereus, which were much better than the positive control streptomycin (MIC 128-256 µg/mL). The studied essential oils showed the potential to defend against mosquitoes since they caused the 24 and 48 h LC50 values of less than 50 µg/mL against the growth of Culex quinquefasciatus and Aedes aegypti larvae. Especially, S. buxifolium leaf essential oil strongly inhibited Ae. aegypti larvae with 24 and 48 h LC50 values of 6.73 and 6.73 µg/mL, respectively, and 24 and 48 h LC90 values of 13.37 and 10.83 µg/mL, respectively. These findings imply that Vietnamese Syzygium essential oils might have potential for use as supplemental antibacterial agents or as "green" alternatives for the control of mosquitoes.


Asunto(s)
Aedes , Antiinfecciosos , Insecticidas , Aceites Volátiles , Syzygium , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Syzygium/química , Vietnam , Cromatografía de Gases y Espectrometría de Masas , Antiinfecciosos/farmacología , Insecticidas/química , Larva
16.
J Pharm Pharmacol ; 75(10): 1259-1293, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37590382

RESUMEN

OBJECTIVES: The genus Cratoxylum contained medicinal herbs, which are widely distributed in South-East Asia and China. Plants of this genus were consumed as a vegetable side dish, a spice, an ingredient in soup, or a substitute for tea, as well as they are traditionally appropriate for various diseases such as fever, cough, flu, diarrhoea, etc. The most aims of the current review are to highlight the ultimate information about the traditional use, phytochemistry and pharmacology of Cratoxylum medicinal plants. KEY FINDINGS: The relevant literature data of Cratoxylum species have been gathered from Google Scholar, Sci-Finder, Web of Science, Science Direct and various journal websites. The most meaningful keyword 'Cratoxylum' was used in combination or alone in the search for references. SUMMARY: More than 150 reports have been retrieved from the search, completely written in English. Most of them are phytochemical and pharmacological studies, which determined the isolations of 277 metabolites. Xanthone derivatives (205 compounds, 74%) are essential, followed by other chemical classes such as flavonoids, anthraquinones, triterpenoids, benzophenones, phytosterols and tocopherols. Cratoxylum constituents possessed complexed pharmacological activities, including antioxidant, antibacterial, anti-inflammatory, antidiabetic, antihypertensive, antimalarial, antiviral, antiamoebic, protein tyrosine phosphatase 1B inhibitory, neuroprotective, hepatoprotective and gastroprotective activities, especially in terms of anticancer.

17.
Phytochemistry ; 213: 113772, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37356700

RESUMEN

Pharmacological studies on flavonoids have always drawn much interest for many years. Icaritin (ICT), a representative flavone containing an 8-prenyl group, is a principal compound detected in medicinal plants of the genus Epimedum, the family Berberidaceae. Experimental results in the phytochemistry and pharmacology of this molecule are abundant now, but a deep overview has not been carried out. The goal of this review is to provide an insight into the natural observation, biosynthesis, biotransformation, synthesis, pharmacology, and pharmacokinetics of prenyl flavone ICT. The relevant data on ICT was collected from bibliographic sources, like Google Scholar, Web of Science, Sci-Finder, and various published journals. "Icaritin" alone or in combination is the main keyword to seek for references, and references have been updated till now. ICT is among the characteristic phytomolecules of Epimedum plants. Bacteria monitored its biosynthesis and biotransformation, while this agent was rapidly synthesized from phloroglucinol by microwave-assistance Claisen rearrangement. ICT is a potential agent in numerous in vitro and in vivo pharmacological records, which demonstrated its role in cancer treatments via apoptotic-related mechanisms. It also brings in various health benefits since it reduced harmful effects on the liver, lung, heart, bone, blood, and skin, and improved immune responses. Pharmacokinetic outcomes indicated that its metabolic pathway involved hydration, hydroxylation, dehydrogenation, glycosylation, and glucuronidation. Molecule mechanisms of action at a cellular level are predominant, but clinical studies are expected to get more. Structure-activity relationship records seem insufficient, and the studies on nano-combined approaches to improve its soluble property in living bodied medium are needed.


Asunto(s)
Flavonas , Plantas Medicinales , Flavonoides/farmacología , Flavonoides/química
18.
Fitoterapia ; 168: 105565, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37295753

RESUMEN

Oxymatrine (OMT), was identified as a quinolizidine alkaloid, which was one of the major matrine-type alkaloids extracted from Sophora medicinal plants. Growing studies revealed that OMT has a wide range of beneficial pharmacological values, consisting of anticancer, antidiabetic, antivirus, and antiinflammtion, as well as the protective activities to the brain, liver, heart, lung, vascular, gastrointestinal, bone, kidney, and skin organs. Various in vitro and in vivo models of pharmacological actions were recorded in regard to the usage of alkaloidal OMT. Mechanisms underlying anticancer activity of this compound may have been possibly involved anti-proliferation, invasion, migration, angiogenesis, epithelial-mesenchymal transition of cells, autophagy, especially apoptotic cell deaths. OMT could reduce hyperglycemia and hyperlipemia in a high-fat diet and streptozotocin-stimulated diabetic mice by improving insulin secretion and sensitivity. OMT suppressed gastric ulcer via gastric inflammatory and oxidative inhibitions, and pro-apoptotic actions. It turns out that OMT is relatively safe for cell and animal experiments. In this study, we offer a systematic review of natural occurrence, pharmacological potentials, possible mechanisms of action, pharmacokinetics, and bioavailability. Clinical research with OMT is needed to extensively elucidate its health potential benefits.


Asunto(s)
Alcaloides , Diabetes Mellitus Experimental , Ratones , Animales , Estructura Molecular , Alcaloides/farmacología , Matrinas , Quinolizinas/farmacocinética
19.
Curr Pharm Biotechnol ; 24(12): 1524-1553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36722485

RESUMEN

BACKGROUND: Knema (the Myristicaceae family) is a large genus of small-medium trees found in Southeast Asia, Africa, and Australia. Historical records dealt with the uses of Knema species as medicinal plants against various diseases, especially cancer remedies, or their application as tonic agents in Asian communities Objective: The aim of this review is to provide the most current knowledge on the traditional uses, chemical profiles, as well as pharmacological values of Knema plants. METHODS: Through electronic search, the literature materials on Knema plants were acquired from scholarly journals, books, and internationally recognized scientific databases, such as PubMed, ScienceDirect, Sci-Finder, Web of Science, and Google Scholar. All full-text articles and abstracts on Knema were screened. Genus Knema, traditional use, phytochemistry, and pharmacology were the first selective keywords to search for references. RESULTS: Since the 1970s, more than 185 metabolites have been isolated from Knema plants and structurally elucidated. Among them, phenolic lipids, flavonoids, and lignans are the principal metabolites. Crude extracts, fractions, and isolated compounds of Knema species possess a wide variety of pharmacological properties, such as antioxidative, antidiabetic, antimicrobial, antiinflammatory, antimalarial, neuroprotective, and hepatoprotective activities, but cytotoxicity is the most striking feature. Phenolic lipids containing long alkyl side chains and polar hydroxyl or acyl groups are found as the most active molecules in cytotoxic assays. CONCLUSION: Further studies on phytochemistry and pharmacological activities, toxicological assessments, pharmacological mechanisms, and pharmacokinetics are urgently needed.


Asunto(s)
Medicina Tradicional , Plantas Medicinales , Etnofarmacología , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Lípidos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fitoterapia
20.
Comb Chem High Throughput Screen ; 26(9): 1660-1688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36177633

RESUMEN

BACKGROUND: Hairy agrimony (Agrimonia pilosa Ledeb.) is a traditional medicinal plant widely used in Eastern Europe and Eastern Asia. The plant is harvested as it comes into flower and could be dried for later usage. Hairy agrimony has been traditionally introduced to treat sore throat, abdominal pain, headache, mucoid dysentery, bloody and white discharge, parasites, and eczema. OBJECTIVE: Since the 1950s, various experimental reports relating to phytochemical and pharmacological aspects have been observed, but an overview is now not available. The current paper emphasizes on in-depth information about the botanical description, traditional use, phytochemistry, and pharmacology. METHODS: The collection of previous research is basically dependent on the reliable resources Sci- Finder, Google Scholar, ScienceDirect, reputation publishers, and thesis books. RESULTS: A. pilosa was found to contain a variety of chemical classes. To date, more than 160 secondary metabolites have been separated, and the derivatives type flavonoids, phloroglucinols, tannins, isocoumarins, and triterpenoids are the main components. A. pilosa crude extracts and their isolates set a broad panel of pharmacological values, including anti-cancer, anti-microbial, antivirus, anti-oxidant, anti-inflammation, anti-diabetes, anti-osteosarcoma, anti-aging, anti-nociception, anti-adipogenesis, anti-leishmaniasis, estrogenic-like activity, neuroprotective and hepatoprotective activities, and vascular relaxation. CONCLUSION: In vitro and in vivo results also successfully explained the pharmacological mechanisms of A. pilosa constituents. More bioassay-guided phytochemical and clinical studies are necessary.


Asunto(s)
Agrimonia , Plantas Medicinales , Flavonoides , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...