Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679435

RESUMEN

With advances in the Internet of Things, patients in intensive care units are constantly monitored to expedite emergencies. Due to the COVID-19 pandemic, non-face-to-face monitoring has been required for the safety of patients and medical staff. A control center monitors the vital signs of patients in ICUs. However, some medical devices, such as ventilators and infusion pumps, operate in a standalone fashion without communication capabilities, requiring medical staff to check them manually. One promising solution is to use a robotic system with a camera. We propose a real-time optical digit recognition embedded system called ROMI. ROMI is a mobile robot that monitors patients by recognizing digits displayed on LCD screens of medical devices in real time. ROMI consists of three main functions for recognizing digits: digit localization, digit classification, and digit annotation. We developed ROMI by using Matlab Simulink, and the maximum digit recognition performance was 0.989 mAP on alexnet. The developed system was deployed on NVIDIA GPU embedded platforms: Jetson Nano, Jetson Xavier NX, and Jetson AGX Xavier. We also created a benchmark by evaluating the runtime performance by considering ten pre-trained CNN models and three NVIDIA GPU platforms. We expect that ROMI will support medical staff with non-face-to-face monitoring in ICUs, enabling more effective and prompt patient care.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Pandemias , Monitoreo Fisiológico , Unidades de Cuidados Intensivos , Signos Vitales
2.
BMC Med Inform Decis Mak ; 21(1): 33, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522919

RESUMEN

BACKGROUND: This study developed a diagnostic tool to automatically detect normal, unclear and tumor images from colonoscopy videos using artificial intelligence. METHODS: For the creation of training and validation sets, 47,555 images in the jpg format were extracted from colonoscopy videos for 24 patients in Korea University Anam Hospital. A gastroenterologist with the clinical experience of 15 years divided the 47,555 images into three classes of Normal (25,895), Unclear (2038) and Tumor (19,622). A single shot detector, a deep learning framework designed for object detection, was trained using the 47,255 images and validated with two sets of 300 images-each validation set included 150 images (50 normal, 50 unclear and 50 tumor cases). Half of the 47,255 images were used for building the model and the other half were used for testing the model. The learning rate of the model was 0.0001 during 250 epochs (training cycles). RESULTS: The average accuracy, precision, recall, and F1 score over the category were 0.9067, 0.9744, 0.9067 and 0.9393, respectively. These performance measures had no change with respect to the intersection-over-union threshold (0.45, 0.50, and 0.55). This finding suggests the stability of the model. CONCLUSION: Automated detection of normal, unclear and tumor images from colonoscopy videos is possible by using a deep learning framework. This is expected to provide an invaluable decision supporting system for clinical experts.


Asunto(s)
Inteligencia Artificial , Neoplasias Colorrectales , Neoplasias Colorrectales/diagnóstico por imagen , Humanos , República de Corea
3.
Sensors (Basel) ; 19(19)2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31590260

RESUMEN

In the vehicular ad-hoc networks (VANETs), wireless access in vehicular environments (WAVE) as the core networking technology is suitable for supporting safety-critical applications, but it is difficult to guarantee its performance when transmitting non-safety data, especially high volumes of data, in a multi-hop manner. Therefore, to provide non-safety applications effectively and reliably for users, we propose a hybrid V2V communication system (HVCS) using hierarchical networking architecture: a centralized control model for the establishment of a fast connection and a local data propagation model for efficient and reliable transmissions. The centralized control model had the functionality of node discovery, local ad-hoc group (LAG) formation, a LAG owner (LAGO) determination, and LAG management. The local data propagation indicates that data are transmitted only within the LAG under the management of the LAGO. To support the end-to-end multi-hop transmission over V2V communication, vehicles outside the LAG employ the store and forward model. We designed three phases consisting of concise device discovery (CDD), concise provisioning (CP), and data transmission, so that the HVCS is highly efficient and robust on the hierarchical networking architecture. Under the centralized control, the phase of the CDD operates to improve connection establishment time, and the CP is to simplify operations required for security establishment. Our HVCS is implemented as a two-tier system using a traffic controller for centralized control using cellular networks and a smartphone for local data propagation over Wi-Fi Direct. The HVCS' performance was evaluated using Veins, and compared with WAVE in terms of throughput, connectivity, and quality of service (QoS). The effectiveness of the centralized control was demonstrated in comparative experiments with Wi-Fi Direct. The connection establishment time measured was only 0.95 s for the HVCS. In the case of video streaming services through the HVCS, about 98% of the events could be played over 16 frames per second. The throughput for the streaming data was between 74% to 81% when the vehicle density was over 50%. We demonstrated that the proposed system has high throughput and satisfies the QoS of streaming services even though the end-to-end delay is a bit longer when compared to that of WAVE.

4.
Sensors (Basel) ; 15(8): 20097-114, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26287206

RESUMEN

Standard upper-limb motor function impairment assessments, such as the Fugl-Meyer Assessment (FMA), are a critical aspect of rehabilitation after neurological disorders. These assessments typically take a long time (about 30 min for the FMA) for a clinician to perform on a patient, which is a severe burden in a clinical environment. In this paper, we propose a framework for automating upper-limb motor assessments that uses low-cost sensors to collect movement data. The sensor data is then processed through a machine learning algorithm to determine a score for a patient's upper-limb functionality. To demonstrate the feasibility of the proposed approach, we implemented a system based on the proposed framework that can automate most of the FMA. Our experiment shows that the system provides similar FMA scores to clinician scores, and reduces the time spent evaluating each patient by 82%. Moreover, the proposed framework can be used to implement customized tests or tests specified in other existing standard assessment methods.


Asunto(s)
Algoritmos , Actividad Motora/fisiología , Extremidad Superior/fisiopatología , Acelerometría/instrumentación , Automatización , Estudios de Factibilidad , Voluntarios Sanos , Humanos , Accidente Cerebrovascular/fisiopatología , Interfaz Usuario-Computador
5.
Sensors (Basel) ; 14(10): 18728-47, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25310467

RESUMEN

In smart environments, target tracking is an essential service used by numerous applications from activity recognition to personalized infotaintment. The target tracking relies on sensors with known locations to estimate and keep track of the path taken by the target, and hence, it is crucial to have an accurate map of such sensors. However, the need for manually entering their locations after deployment and expecting them to remain fixed, significantly limits the usability of target tracking. To remedy this drawback, we present a self-configuring and device-free localization protocol based on genetic algorithms that autonomously identifies the geographic topology of a network of ultrasonic range sensors as well as automatically detects any change in the established network structure in less than a minute and generates a new map within seconds. The proposed protocol significantly reduces hardware and deployment costs thanks to the use of low-cost off-the-shelf sensors with no manual configuration. Experiments on two real testbeds of different sizes show that the proposed protocol achieves an error of 7.16~17.53 cm in topology mapping, while also tracking a mobile target with an average error of 11.71~18.43 cm and detecting displacements of 1.41~3.16 m in approximately 30 s.

6.
Sensors (Basel) ; 14(9): 16235-57, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25184489

RESUMEN

Research on smart environments saturated with ubiquitous computing devices is rapidly advancing while raising serious privacy issues. According to recent studies, privacy concerns significantly hinder widespread adoption of smart home technologies. Previous work has shown that it is possible to infer the activities of daily living within environments equipped with wireless sensors by monitoring radio fingerprints and traffic patterns. Since data encryption cannot prevent privacy invasions exploiting transmission pattern analysis and statistical inference, various methods based on fake data generation for concealing traffic patterns have been studied. In this paper, we describe an energy-efficient, light-weight, low-latency algorithm for creating dummy activities that are semantically similar to the observed phenomena. By using these cloaking activities, the amount of  fake data transmissions can be flexibly controlled to support a trade-off between energy efficiency and privacy protection. According to the experiments using real data collected from a smart home environment, our proposed method can extend the lifetime of the network by more than 2× compared to the previous methods in the literature. Furthermore, the activity cloaking method supports low latency transmission of real data while also significantly reducing the accuracy of the wireless snooping attacks.


Asunto(s)
Actigrafía/métodos , Redes de Comunicación de Computadores , Seguridad Computacional , Confidencialidad , Almacenamiento y Recuperación de la Información/métodos , Telemedicina/métodos , Tecnología Inalámbrica , Algoritmos , Servicios de Atención de Salud a Domicilio , Humanos , Semántica
7.
Sensors (Basel) ; 14(8): 15244-61, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25195851

RESUMEN

In a point-of-care (POC) setting, it is critically important to reliably count the number of specific cells in a blood sample. Software-based cell counting, which is far faster than manual counting, while much cheaper than hardware-based counting, has emerged as an attractive solution potentially applicable to mobile POC testing. However, the existing software-based algorithm based on the normalized cross-correlation (NCC) method is too time- and, thus, energy-consuming to be deployed for battery-powered mobile POC testing platforms. In this paper, we identify inefficiencies in the NCC-based algorithm and propose two synergistic optimization techniques that can considerably reduce the runtime and, thus, energy consumption of the original algorithm with negligible impact on counting accuracy. We demonstrate that an AndroidTM smart phone running the optimized algorithm consumes 11.5× less runtime than the original algorithm.


Asunto(s)
Recuento de Células/métodos , Teléfono Celular , Algoritmos , Humanos , Programas Informáticos
8.
Lab Chip ; 13(17): 3398-409, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23839256

RESUMEN

To achieve the important aims of identifying and marking disease progression, cell counting is crucial for various biological and medical procedures, especially in a Point-Of-Care (POC) setting. In contrast to the conventional manual method of counting cells, a software-based approach provides improved reliability, faster speeds, and greater ease of use. We present a novel software-based approach to count in-line holographic cell images using the calculation of a normalized 2D cross-correlation. This enables fast, computationally-efficient pattern matching between a set of cell library images and the test image. Our evaluation results show that the proposed system is capable of quickly counting cells whilst reliably and accurately following human counting capability. Our novel approach is 5760 times faster than manual counting and provides at least 68% improved accuracy compared to other image processing algorithms.


Asunto(s)
Recuento de Células/instrumentación , Recuento de Células/métodos , Holografía/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Animales , Células Sanguíneas/citología , Humanos , Ratones , Células 3T3 NIH
9.
Korean J Anesthesiol ; 60(5): 344-50, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21716907

RESUMEN

BACKGROUND: Episodes of bradycardia hypotension (BH) or vasovagal syncope have a reported incidence of 13-29% during arthroscopic shoulder surgery in the sitting position after an interscalene block (ISB). This study was designed to investigate whether intravenous fentanyl during shoulder arthroscopy in the sitting position after ISB would increase or worsen the incidence of BH episodes. METHODS: In this prospective study, 20 minutes after being in a sitting position, 160 patients who underwent ISB were randomized to receive saline (S, n = 40), 50 µg of fentanyl (F-50, n = 40), 100 µg of fentanyl (F-100, n = 40) or 30 mg of ketorolac (K-30, n = 40) randomly. We assessed the incidence of BH episodes during the operation and the degree of maximal reduction (Rmax) of blood pressure (BP) and heart rate (HR). RESULTS: The incidence of BH episodes was 10%, 15%, 27.5% and 5% in the S, F-50, F-100 and K-30 groups, respectively. Mean Rmax of systolic BP in the F-100 group was significantly decreased as compared to the S group (-20.0 ± 4.5 versus -6.3 ± 1.6%, P = 0.004). Similarly, mean Rmax of diastolic BP in the F-100 group was also significantly decreased (P = 0.008) as compared to the S group. CONCLUSIONS: These results suggest that fentanyl can increase the incidence of BH episodes during shoulder arthroscopic surgery in the sitting position after ISB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...