Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273478

RESUMEN

The prevalence of obesity-induced asthma increases in women after menopause. We hypothesized that the increase in obese asthma in middle-aged women results from estrogen loss. In particular, we focused on the acute action of estrogen through the G protein-coupled estrogen receptor 1 (GPER), previously known as GPR30. We investigated whether GPER activation ameliorates obesity-induced asthma with a high-fat diet (HFD) using G-1, the GPER agonist, and G-36, the GPER antagonist. Administration of G-1 (0.5 mg/kg) suppressed HFD-induced airway hypersensitivity (AHR), and increased immune cell infiltration, whereas G-36 co-treatment blocked it. Histological analysis showed that G-1 treatment inhibited HFD-induced inflammation, fibrosis, and mucus hypersecretion in a GPER-dependent manner. G-1 inhibited the HFD-induced rise in the mRNA levels of pro-inflammatory cytokines in the gonadal white adipose tissue and lungs, whereas G-36 co-treatment reversed this effect. G-1 increased anti-inflammatory M2 macrophages and inhibited the HFD-induced rise in pro-inflammatory M1 macrophages in the lungs. In addition, G-1 treatment reversed the HFD-induced increase in leptin expression and decrease in adiponectin expression in the lungs and gonadal white adipose tissue. The results suggest that activation of GPER could be a therapeutic option for obesity-induced asthma.


Asunto(s)
Asma , Dieta Alta en Grasa , Macrófagos , Obesidad , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Asma/metabolismo , Asma/tratamiento farmacológico , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Receptores de Estrógenos/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Femenino , Quinolinas/farmacología , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Citocinas/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000464

RESUMEN

GPR55 is a receptor for lysophosphatidylinositols (LPIs) in digestive metabolites. Overnutrition leads to obesity, insulin resistance, and increased LPI levels in the plasma. The involvement of LPIs and GPR55 in adiposity, hepatic steatosis, and atherosclerosis has been previously elucidated. However, the therapeutic efficacy of GPR55 antagonists against obesity-induced airway inflammation has not been studied. The present study investigated whether CID16020046, a selective antagonist of GPR55, could modulate obesity-induced airway inflammation caused by a high-fat diet (HFD) in C57BL/6 mice. Administration of CID16020046 (1 mg/kg) inhibits HFD-induced adiposity and glucose intolerance. Analysis of immune cells in BALF showed that CID16020046 inhibited HFD-induced increase in immune cell infiltration. Histological analysis revealed the HFD induced hypersecretion of mucus and extensive fibrosis in the lungs. CID16020046 inhibited these HFD-induced pathological features. qRT-PCR revealed the HFD-induced increase in the expression of Ifn-γ, Tnf-α, Il-6, Il-13, Il-17A, Il-1ß, Nlrp3, and Mpo mRNAs in the lungs. CID16020046 inhibited the HFD-induced increases in these genes. The expression levels of adipokines were regulated by the HFD and CID16020046. AdipoQ in the lungs and gonadal white adipose tissue was decreased by the HFD and reversed by CID16020046. In contrast, Lep was increased by the HFD and suppressed by CID16020046. The findings suggest the potential application of the GPR55 antagonist CID16020046 in obesity-induced airway inflammation.


Asunto(s)
Dieta Alta en Grasa , Pulmón , Ratones Endogámicos C57BL , Obesidad , Receptores de Cannabinoides , Animales , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/complicaciones , Ratones , Dieta Alta en Grasa/efectos adversos , Masculino , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Receptores de Cannabinoides/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Adiposidad/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores
3.
Biomed Pharmacother ; 174: 116509, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574615

RESUMEN

Obese asthma is recognized to have different asthma phenotypes. N-3 polyunsaturated fatty acids (PUFAs) have shown beneficial effects in obesity and metabolic syndrome. Free fatty acid receptor 4 (FFA4, also known as GPR120) is a receptor for n-3 PUFAs. In the present study, we investigated whether FFA4 activation ameliorates high-fat diet (HFD)-induced obese asthma. We investigated whether FFA4 activation ameliorates obese asthma using an FFA4 agonist, compound A (CpdA), in combination with FFA4 wild-type (WT) and knock-out (KO) mice. Administration of an FFA4 agonist, compound A (CpdA, 30 mg/kg), suppressed HFD-induced weight gain, adiposity, and airway hypersensitivity (AHR), and increased immune cell infiltration in an FFA4-dependent manner. Histological analysis revealed that CpdA treatment suppressed HFD-induced mucus hypersecretion, inflammation, and fibrosis in an FFA4-dependent manner. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed an HFD-induced increase in the mRNA levels of pro-inflammatory cytokines in the lungs and gonadal white adipose tissue, whereas CpdA inhibited this increase in an FFA4-dependent manner. In the fluorescence-activated cell sorting (FACS) analysis, HFD induced an increase in the lung innate lymphoid cells (ILC) ILC1, ILC2, and ILC3; however, CpdA reversed this increase. In addition, HFD induced an increase in the pro-inflammatory M1 macrophage population and a decrease in the anti-inflammatory M2 macrophage population in the lungs, whereas CpdA treatment reversed these changes. The present study suggests that FFA4 activation may have therapeutic potential in obese asthma.


Asunto(s)
Adiposidad , Asma , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad , Receptores Acoplados a Proteínas G , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Adiposidad/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Masculino , Ratones , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Citocinas/metabolismo
4.
Int Immunopharmacol ; 130: 111800, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38447416

RESUMEN

p38 MAPK has been implicated in the pathogenesis of rheumatoid arthritis and psoriasis. To assess the therapeutic efficacy of the p38 MAPK inhibitor NJK14047 in the treatment of rheumatoid arthritis and psoriasis, we developed mouse models of collagen-induced rheumatoid arthritis (CIA) and imiquimod-induced psoriasis (IIP). NJK14047 was found to suppress arthritis development and psoriasis symptoms and also suppressed histopathological changes induced by CIA and IIP. Furthermore, we established that CIA and IIP evoked increases in the mRNA expression levels of Th1/Th17 inflammatory cytokines in the joints and skin, which was again suppressed by NJK14047. NJK14047 reversed the enlargement of spleens induced by CIA and IIP as well as increases in the levels of inflammatory cytokine in spleens following induction by CIA and IIP. In human SW982 synovial cells, NJK14047 was found to suppress lipopolysaccharide-induced increases in the mRNA expression of proinflammatory cytokines. NJK14047 inhibition of p38 MAPK suppressed the differentiation of naïve T cells to Th17 and Th1 cells. Our findings in this study provide convincing evidence indicating the therapeutic efficacy of the p38 MAPK inhibitor NJK14047 against CIA and IIP, which we speculate could be associated with the suppression on T-cell differentiation.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Inhibidores de Proteínas Quinasas , Psoriasis , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Humanos , Ratones , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Diferenciación Celular , Citocinas/genética , Citocinas/metabolismo , Imiquimod , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , ARN Mensajero/metabolismo , Células Th17 , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ratones Endogámicos DBA , Masculino , Línea Celular
5.
Int Immunopharmacol ; 127: 111428, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38159551

RESUMEN

Free fatty acid 3 receptor (FFA3; previously GPR41) is a G protein-coupled receptor that senses short-chain fatty acids and dietary metabolites produced by the gut microbiota. FFA3 deficiency reportedly exacerbates inflammatory events in asthma. Herein, we aimed to determine the therapeutic potential of FFA3 agonists in treating inflammatory diseases. We investigated the effects of N-(2,5-dichlorophenyl)-4-(furan-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxamide (AR420626), an FFA3 agonist, in in vivo models of chemically induced allergic asthma and eczema in BALB/c mice. Administration of AR420626 decreased the number of immune cells in the bronchoalveolar lavage fluid and skin. AR420626 suppressed inflammatory cytokine expression in the lung and skin tissues. Histological examination revealed that AR420626 suppressed inflammation in the lungs and skin. Treatment with AR420626 significantly suppressed the enhanced lymph node size and inflammatory cytokine levels. Overall, FFA3 agonist AR420626 could suppress allergic asthma and eczema, implying that activation of FFA3 might be a therapeutic target for allergic diseases.


Asunto(s)
Asma , Eccema , Ratones , Animales , Ácidos Grasos no Esterificados/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Asma/tratamiento farmacológico , Citocinas/metabolismo , Ratones Endogámicos BALB C , Ovalbúmina , Modelos Animales de Enfermedad
6.
Int Immunopharmacol ; 124(Pt B): 110995, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37801970

RESUMEN

As angiotensin II is associated with inflammation, type I angiotensin II receptor blockers (ARBs) exibit anti-inflammatory effects in patients with hypertension as well as inflammatory disease animal models including arthritis models. The present study aimed to investigate whether ARBs exert anti-inflammatory effects in vivo in skin disorders. We tested effects of ARBs on 1-chloro-2,4-dinitrobenzene(CDNB)-induced atopic dermatitis-like and imiquimod-induced psoriasis-like skin models. CDNB-induced atopic dermatitis-like skin lesions were suppressed by administration of candesartan or telmisartan. The suppressive effect of telmisartan was blocked by the presence of GW9662, a selective PPARγ inhibitor, but not that of candesartan. Both ARBs suppressed increases in pro-inflammatory cytokine (IL-4, IL-13, IFN-γ, and IL-17A) levels, and GW9662 inhibited telmisartan-induced suppression but not candesartan. Candesartan significantly inhibited in vitro differentiation of naïve T cells into Th17 cells to a greater extent than telmisartan. In the imiquimod-induced psoriasis model, whose primary etiology is activation of IL-23/IL-17 axis, candesartan significantly suppressed psoriasis-like skin lesions and Th17 cell populations in both lymph nodes and spleens to a greater extent than telmisartan. Overall, certain ARBs may have anti-inflammatory effects in skin diseases. Candesartan may have therapeutic implications in inflammatory skin disorders by suppressing Th17 differentiation, while telmisartan might have therapeutic potential by activating PPARγ.


Asunto(s)
Dermatitis Atópica , Psoriasis , Animales , Humanos , Telmisartán/uso terapéutico , Células Th17 , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Dermatitis Atópica/tratamiento farmacológico , Antagonistas de Receptores de Angiotensina , PPAR gamma , Imiquimod/uso terapéutico , Benzoatos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Piel/patología , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Diferenciación Celular , Antiinflamatorios/uso terapéutico
7.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562873

RESUMEN

Dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) has been used as an adjunct therapy for psoriasis due to its anti-inflammatory properties. Free fatty acid receptor 4 (FFA4 or GPR120) is a receptor-sensing n-3 PUFA. In the present study, we examined whether FFA4 acted as a therapeutic target for n-3 PUFA in psoriasis therapy. Experimentally, psoriasis-like skin lesions were induced by treatment with imiquimod for 6 consecutive days. A selective FFA4 agonist, Compound A (30 mg/kg), was used in FFA4 WT and FFA4 KO mice. Imiquimod-induced psoriasis-like skin lesions, which present as erythematous papules and plaques with silver scaling, as well as markedly elevated IL-17/IL-23 cytokine levels in skin tissues, were significantly suppressed by Compound A in FFA4 WT mice, but not in FFA4 KO mice. Enlarged lymph nodes and spleens, as well as imiquimod-induced, elevated IL-17/IL-23 cytokine levels, were also strongly suppressed by Compound A in FFA4 WT mice, but not in FFA4 KO mice. Imiquimod-induced increases in the CD4+IL-17A+ T cell population in lymph nodes and spleens were suppressed by Compound A treatment in FFA4 WT mice; however, this was not seen in FFA4 KO mice. Furthermore, compound A suppressed the differentiation of CD4+ naïve T cells from splenocytes into TH17 cells in an FFA4-dependent manner. In conclusion, we demonstrated that the activation of FFA4 ameliorates imiquimod-induced psoriasis, and the suppression of the differentiation of TH17 cells may partly contribute to its efficacy. Therefore, we suggest that FFA4 could be a therapeutic target for psoriasis therapy.


Asunto(s)
Ácidos Grasos Omega-3 , Psoriasis , Animales , Citocinas/uso terapéutico , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/uso terapéutico , Ácidos Grasos Omega-3/uso terapéutico , Imiquimod/toxicidad , Interleucina-17/genética , Interleucina-23 , Ratones , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Piel/patología
8.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563671

RESUMEN

Epidemiological and clinical studies have suggested that intake of n-3 polyunsaturated fatty acids (PUFA) reduces the incidence of allergic airway diseases and improves pulmonary function in patients with allergic asthma. However, the pharmacological targets of PUFA have not been elucidated upon. We investigated whether free fatty acid receptor 4 (FFA4, also known as GPR120) is a molecular target for beneficial PUFA in asthma therapy. In an ovalbumin (OVA)-induced allergic asthma model, compound A (a selective agonist of FFA4) was administrated before OVA sensitization or OVA challenge in FFA4 wild-type (WT) and knock-out (KO) mice. Compound A treatment of RBL-2H3 cells suppressed mast cell degranulation in vitro in a concentration-dependent manner. Administration of compound A suppressed in vivo allergic characteristics in bronchoalveolar lavage fluid (BALF) and lungs, such as inflammatory cytokine levels and eosinophil accumulation in BALF, inflammation and mucin secretion in the lungs. Compound A-induced suppression was not only observed in mice treated with compound A before OVA challenge, but in mice treated before OVA sensitization as well, implying that compound A acts on mast cells as well as dendritic cells. Furthermore, this suppression by compound A was only observed in FFA4-WT mice and was absent in FFA4-KO mice, implying that compound A action is mediated through FFA4. Activation of FFA4 may be a therapeutic target of PUFA in allergic asthma by suppressing the activation of dendritic cells and mast cells, suggesting that highly potent specific agonists of FFA4 could be a novel therapy for allergic asthma.


Asunto(s)
Asma , Mastocitos , Animales , Asma/inducido químicamente , Líquido del Lavado Bronquioalveolar , Citocinas/uso terapéutico , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/uso terapéutico , Humanos , Pulmón , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ovalbúmina/efectos adversos
9.
Artículo en Inglés | MEDLINE | ID: mdl-34691223

RESUMEN

Prevalence of atopic dermatitis (AD), a chronic, pruritic, and relapsing inflammatory skin disorder, is growing. Because available therapeutics is limited, immune regulators from natural resources could be helpful for treating AD symptoms. The root of Salvia miltiorrhiza Bunge (Lamiaceae) has been studied for the treatment of inflammatory diseases, including dermatologic disorders in Korea. This study examined the effect of salvianolic acid A on AD-like symptoms. Sensitization on the dorsal skin and repeated application on the ears with 2,4-dinitrochlorobenzene (DNCB) were performed in BALB/c mice to induce AD-like skin lesions. After induction of atopic dermatitis, salvianolic acid A (5 and 10 mg/kg) or dexamethasone (10 mg/kg) were administrated via intraperitoneal injection for 3 weeks. Salvianolic acid A suppressed DNCB-induced AD-like symptoms like ear skin hypertrophy and decreased mast cell infiltration into skin lesions. Salvianolic acid A not only reduced DNCB-induced increase of serum IgE but also lowered levels of the Th2 cytokines (IL-4 and IL-13), Th1 cytokine (interferon-γ), and Th17 cytokine (IL-17A). Furthermore, salvianolic acid A blocked DNCB-induced lymph node enlargement. In summary, these results suggest that salvianolic acid A might have a therapeutic potential for the treatment of AD.

10.
Biomol Ther (Seoul) ; 29(1): 22-30, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33372166

RESUMEN

Till the 21st century, fatty acids were considered as merely building blocks for triglycerides, phospholipids, or cholesteryl esters. However, the discovery of G protein-coupled receptors (GPCRs) for free fatty acids at the beginning of the 21st century challenged that idea and paved way for a new field of research, merged into the field of receptor pharmacology for intercellular lipid mediators. Among the GPCRs for free fatty acids, free fatty acid receptor 4 (FFA4, also known as GPR120) recognizes long-chain polyunsaturated fatty acids such as DHA and EPA. It is significant in drug discovery because it regulates obesity-induced metaflammation and GLP-1 secretion. Our study reviews information on newly developed FFA4 agonists and their application in pathophysiologic studies and drug discovery. It also offers a potency comparison of the FFA4 agonists in an AP-TGF-α shedding assay.

11.
Acta Pharmacol Sin ; 41(10): 1337-1347, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32555509

RESUMEN

High dose intake of docosahexaenoic acid showed beneficial effects on atopic dermatitis in patients and was found to increase regulatory T cells in mice, but its molecular target has not been identified. Free fatty acid receptor 4 (FFA4, also known as GPR120) is a receptor sensing polyunsaturated long-chain fatty acids including docosahexaenoic acid. In the present study, we examined whether FFA4 acted as a therapeutic target of docosahexaenoic acid for treating atopic dermatitis. Experimental atopic dermatitis was induced in mice by 2,4-dinitrochlorobenzene (DNCB) sensitization on day 0, followed by repeated DNCB challenges from D7 to D48. The mice were treated with a selective agonist compound A (30 mg· kg-1· d-1, ip) from D19 to D48, and sacrificed on D49. We found that DNCB-induced atopic dermatitis-like skin lesions, i.e. hypertrophy and mast cell infiltration in skin tissues, as well as markedly elevated serum IgE levels. Administration of compound A significantly suppressed the atopic responses in ears and lymph nodes, such as hypertrophy and mast cell infiltration in the ears, enlarged sizes of lymph nodes, and elevated serum IgE and levels of cytokines IL-4, IL-13, IL-17, and IFN-γ in ear tissue. The therapeutic effects of compound A were abolished by FFA4 knockout. Similarly, increased CD4+Foxp3+ regulatory T-cell population in lymph nodes was observed in wide-type mice treated with compound A, but not seen in FFA4-deficient mice. In conclusion, we demonstrate that activation of FFA4 ameliorates atopic dermatitis by increasing CD4+Foxp3+ regulatory T cells, suggesting FFA4 as a therapeutic target for atopic dermatitis.


Asunto(s)
Ácido Acético/uso terapéutico , Compuestos Aza/uso terapéutico , Dermatitis Atópica/tratamiento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Linfocitos T Reguladores/metabolismo , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/patología , Dinitroclorobenceno , Oído/patología , Técnicas de Inactivación de Genes , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Masculino , Ratones Endogámicos BALB C , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...