Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Korean J Physiol Pharmacol ; 28(2): 107-112, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38414393

RESUMEN

27-Hydroxycholesterol (27OHChol), a prominent cholesterol metabolite present in the bloodstream and peripheral tissues, is a kind of immune oxysterol that elicits immune response. Recent research indicates the involvement of 27OHChol in metabolic inflammation (meta-inflammation) characterized by chronic responses associated with metabolic irregularities. 27OHChol activates monocytic cells such that they secrete pro-inflammatory cytokines and chemokines, and increase the expression of cell surface molecules such as pattern-recognition receptors that play key roles in immune cell-cell communication and sensing metabolism-associated danger signals. Levels of 27OHChol increase when cholesterol metabolism is disrupted, and the resulting inflammatory responses can contribute to the development and complications of metabolic syndrome, including obesity, insulin resistance, and cardiovascular diseases. Since 27OHChol can induce chronic immune response by activating monocyte-macrophage lineage cells that play a crucial role in meta-inflammation, it is essential to understand the 27OHChol-induced inflammatory responses to unravel the roles and mechanisms of action of this cholesterol metabolite in chronic metabolic disorders.

2.
Immune Netw ; 23(5): e40, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37970232

RESUMEN

Glucocorticoids suppress the vascular inflammation that occurs under hypercholesterolemia, as demonstrated in an animal model fed a high-cholesterol diet. However, the molecular mechanisms underlying these beneficial effects remain poorly understood. Because cholesterol is oxidized to form cholesterol oxides (oxysterols) that are capable of inducing inflammation, we investigated whether glucocorticoids affect the immune responses evoked by 7α-hydroxycholesterol (7αOHChol). The treatment of human THP-1 monocytic cells with dexamethasone (Dex) and prednisolone (Pdn) downregulated the expression of pattern recognition receptors (PRRs), such as TLR6 and CD14, and diminished 7αOHChol-enhanced response to FSL-1, a TLR2/6 ligand, and lipopolysaccharide, which interacts with CD14 to initiate immune responses, as determined by the reduced secretion of IL-23 and CCL2, respectively. Glucocorticoids weakened the 7αOHChol-induced production of CCL2 and CCR5 ligands, which was accompanied by decreased migration of monocytic cells and CCR5-expressing Jurkat T cells. Treatment with Dex or Pdn also reduced the phosphorylation of the Akt-1 Src, ERK1/2, and p65 subunits. These results indicate that both Dex and Pdn impair the expression of PRRs and their downstream products, chemokine production, and phosphorylation of signaling molecules. Collectively, glucocorticoids suppress the innate immune response and activation of monocytic cells to an inflammatory phenotype enhanced or induced by 7αOHChol, which may contribute to the anti-inflammatory effects in hypercholesterolemic conditions.

3.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894967

RESUMEN

In individuals with Alzheimer's disease, the brain exhibits elevated levels of IL-1ß and oxygenated cholesterol molecules (oxysterols). This study aimed to investigate the effects of side-chain oxysterols on IL-1ß expression using HMC3 microglial cells and ApoE-deficient mice. Treatment of HMC3 cells with 25-hydroxycholesterol (25OHChol) and 27-hydroxycholesterol (27OHChol) led to increased IL-1ß expression at the transcript and protein levels. Additionally, these oxysterols upregulated the surface expression of MHC II, a marker of activated microglia. Immunohistochemistry performed on the mice showed increased microglial expression of IL-1ß and MHC II when fed a high-cholesterol diet. However, cholesterol and 24s-hydroxycholesterol did not increase IL-1ß transcript levels or MHC II expression. The extent of IL-1ß increase induced by 25OHChol and 27OHChol was comparable to that caused by oligomeric ß-amyloid, and the IL-1ß expression induced by the oxysterols was not impaired by polymyxin B, which inhibited lipopolysaccharide-induced IL-1ß expression. Both oxysterols enhanced the phosphorylation of Akt, ERK, and Src, and inhibition of these kinase pathways with pharmacological inhibitors suppressed the expression of IL-1ß and MHC II. The pharmacological agents chlorpromazine and cyclosporin A also impaired the oxysterol-induced expression of IL-1ß and upregulation of MHC II. Overall, these findings suggest that dysregulated cholesterol metabolism leading to elevated levels of side-chain oxysterols, such as 25OHChol and 27OHChol, can activate microglia to secrete IL-1ß through a mechanism amenable to pharmacologic intervention. The activation of microglia and subsequent neuroinflammation elicited by the immune oxysterols can contribute to the development of neurodegenerative diseases.


Asunto(s)
Microglía , Oxiesteroles , Animales , Ratones , Microglía/metabolismo , Oxiesteroles/metabolismo , Enfermedades Neuroinflamatorias , Macrófagos/metabolismo , Encéfalo/metabolismo
4.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445719

RESUMEN

The expression of CD14 in monocytic cells is elevated in atherosclerotic lesions where 7-oxyterols are abundant. However, it remains unknown whether atheroma-relevant 7-oxysterols are involved in receptor expression. Therefore, we investigated the effects of 7α-hydroxycholesterol (7αOHChol), 7ß-hydroxycholesterol (7ßOHChol), and 7-ketocholesterol (7K) on CD14 levels in THP-1 cells. The three 7-oxysterols increased CD14 transcript levels at a distinct time point, elevated cellular CD14 protein levels, and promoted the release of soluble CD (sCD14) from THP-1 cells. Our data revealed that CD14 expression was most strongly induced after treatment with 7αOHChol. Moreover, 7αOHChol alone upregulated membrane-bound CD14 levels and enhanced responses to lipopolysaccharides, as determined by CCL2 production and monocytic cell migration. The 7-oxysterols also increased the gelatinolytic activity of MMP-9, and a cell-permeable, reversible MMP-9 inhibitor, MMP-9 inhibitor I, significantly impaired sCD14 release. These results indicate that 7-oxysterols differentially induce CD14 expression in vascular cells and contribute to the monocytic cell expression of CD14 via overlapping, but distinct, mechanisms.


Asunto(s)
Oxiesteroles , Placa Aterosclerótica , Humanos , Oxiesteroles/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/metabolismo , Monocitos/metabolismo
5.
Sci Rep ; 12(1): 8213, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581378

RESUMEN

Zonula occludens (ZO)-1, a tight-junction protein (TJP), is expressed in dendritic cells (DCs) but not in monocytes, and 27-hydroxycholesterol (27OHChol) drives the differentiation of monocytes into DCs. Because the effects of 27OHChol on ZO-1 are not yet clearly defined, we investigated whether 27OHChol induces expression of the TJP. The treatment of human THP-1 monocytic cells with 27OHChol resulted in the elevated transcript levels of ZO-1 but not of ZO-2 or -3. 27OHChol increased the total amount of ZO-1 protein in the cells as well as its level on the cells surface. Cholesterol, however, did not influence expression of ZO-1. And, the expression of ZO-1 protein was mediated by endoplasmic reticulum (ER)-to-Golgi body transport system. Pharmacological kinase inhibition with LY294002 (a PI3K inhibitor), U0126 (a MEK/ERK inhibitor), or PP2 (a Src family kinase inhibitor) resulted in impaired ZO-1 expression at both transcript and protein levels. Drugs that are reported to suppress DC differentiation also inhibited 27OHChol-mediated expression and the localization of ZO-1, indicating the coincidence of ZO-1 upregulation and DC differentiation. These results suggest that ZO-1 is differentially expressed while monocytes differentiate into DCs in the presence of 27OHChol via pathways in which distinct signaling molecules are involved.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Uniones Estrechas , Humanos , Hidroxicolesteroles/metabolismo , Hidroxicolesteroles/farmacología , Monocitos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
6.
Sci Rep ; 12(1): 7519, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525902

RESUMEN

Several derivatives derived from the oxime structure have been reported as potential anticancer agents in various cancers. Here, we first tested a novel oxime-containing derivative of 2-((2,4,5-trifluorobenzyl)oxy)benzaldehyde oxime (TFOBO) to evaluate its anticancer effect in myeloid leukemic cells. Compared to (2-((2,4,5-trifluorobenzyl)oxy)phenyl)methanol (TFOPM), the oxime derivative TFOBO suppresses leukemic cell growth by significantly increasing reactive oxygen species (ROS) levels and cell death. Leukemic cells treated with TFOBO displayed apoptotic cell death, as indicated by nuclear condensation, DNA fragmentation, and annexin V staining. TFOBO increases Bax/Bcl2 levels, caspase9, and caspase3/7 activity and decreases mitochondrial membrane potential. ROS production was reduced by N-acetyl-L-cysteine, a ROS scavenger, diphenyleneiodonium chloride, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, after exogenous TFOBO treatment. ROS inhibitors protect leukemic cells from TFOBO-induced cell death. Thus, our study findings suggest that TFOBO promotes apoptosis by modulating ROS and regulating NADPH oxidase activity. Collectively, the oxime-containing derivative TFOBO is a novel therapeutic drug for myeloid leukemia.


Asunto(s)
Leucemia Mieloide , Oximas , Apoptosis , Muerte Celular , Humanos , Leucemia Mieloide/tratamiento farmacológico , NADPH Oxidasas/metabolismo , Oximas/farmacología , Especies Reactivas de Oxígeno/metabolismo
7.
Front Pharmacol ; 12: 691019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744703

RESUMEN

Miconazole is effective in treating inflammatory skin conditions and has well-established antifungal effects. To elucidate the underlying mechanisms mediating its additional beneficial effects, we assessed whether miconazole influences the inflammation induced by 27-hydroxycholesterol (27OHChol), an oxygenated cholesterol derivative with high proinflammatory activity, using THP-1 monocytic cells. Miconazole dose-dependently inhibited the expression of proinflammatory markers, including CCL2 and CCR5 ligands such as CCL3 and CCL4, and impaired the migration of monocytic cells and CCR5-positive T cells. In the presence of 27OHChol, miconazole decreased CD14 surface levels and considerably weakened the lipopolysaccharide response. Furthermore, miconazole blocked the release of soluble CD14 and impaired the transcription of the matrix metalloproteinase-9 gene and secretion of its active gene product. Additionally, it downregulated the expression of ORP3 and restored the endocytic function of THP-1 cells. Collectively, these findings indicate that miconazole regulates the 27OHChol-induced expression of proinflammatory molecules in monocytic cells, thereby suppressing inflammation in an oxysterol-rich milieu.

8.
Korean J Physiol Pharmacol ; 25(2): 111-118, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33602881

RESUMEN

27-Hydroxycholesterol (27OHChol) exhibits agonistic activity for liver X receptors (LXRs). To determine roles of the LXR agonistic activity in macrophage gene expression, we investigated the effects of LXR inhibition on the 27OHChol-induced genes. Treatment of human THP-1 cells with GSK 2033, a potent cell-active LXR antagonist, results in complete inhibition in the transcription of LXR target genes (such as LXRα and ABCA1) induced by 27OHChol or a synthetic LXR ligand TO 901317. Whereas expression of CCL2 and CCL4 remains unaffected by GSK 2033, TNF-α expression is further induced and 27OHChol-induced CCL3 and CXCL8 genes are suppressed at both the transcriptional and protein translation levels in the presence of GSK 2033. This LXR antagonist downregulates transcript levels and surface expression of CD163 and CD206 and suppresses the transcription of CD14, CD80, and CD86 genes without downregulating their surface levels. GSK 2033 alone had no effect on the basal expression levels of the aforementioned genes. Collectively, these results indicate that LXR inhibition leads to differential regulation of 27-hydroxycholesterolinduced genes in macrophages. We propose that 27OHChol induces gene expression and modulates macrophage functions via LXR-dependent and -independent mechanisms.

9.
Immune Netw ; 20(2): e17, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32395369

RESUMEN

We investigated effects of reblastatins on phenotypic changes in monocytes/macrophages induced by 27-hydroxycholesterol (27OHChol). Treatment of THP-1 monocytic cells with reblastatin derivatives, such as 17-demethoxy-reblastatin (17-DR), 18-dehydroxyl-17-demethoxyreblastatin (WK88-1), 18-hydroxyl-17-demethoxyreblastatin (WK88-2), and 18-hydroxyl-17-demethoxy-4,5-dehydroreblastatin (WK88-3), resulted in blockage of CCL2, CCL3, and CCL4 expression at the transcription and protein levels, which, in turn, impaired migration of monocytes/macrophages and Jurkat T cells expressing CCR5, and almost complete inhibition of transcription of M1 marker cytokines, like CXCL10, CXCL11, and TNF-α. Reblastatins also downregulated surface CD14 as well as soluble CD14 along with inhibition of LPS response and matrix metalloprotease-9 expression. Surface levels of mature dendritic cell (mDC)-specific markers, including CD80, CD83, CD88, CD197, and MHC class I and II molecules, were remarkably down-regulated, and 27OHChol-induced decrease of endocytic activity was recovered following treatment with 17-DR, WK88-1, WK88-2, and WK88-3. However, 15-hydroxyl-17-demethoxyreblastatin (DHQ3) did not affect the molecular or functional changes in monocytic cells induced by 27OHChol. Furthermore, surface levels of CD105, CD137, and CD166 were also down-regulated by 17-DR, WK88-1, WK88-2, and WK88-3, but not by DHQ3. Collectively, results of the current study indicate that, except DHQ3, reblastatins regulate the conversion and differentiation of monocytic cells to an immunostimulatory phenotype and mDCs, respectively, which suggests possible applications of reblastatins for immunomodulation in a milieu rich in oxygenated cholesterol molecules.

10.
Exp Ther Med ; 19(3): 2335-2342, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194655

RESUMEN

In cholesterol-fed rabbits, site-specific targeting of prednisolone nanoparticles results in significantly reduced neo-intimal inflammation with a decreased infiltration of monocytes/macrophages. To understand the molecular mechanisms underlying this, the current study investigated whether prednisolone affects the immune attributes of 27-hydroxycholesterol (27OHChol), the major oxidized cholesterol molecule in circulation and tissue, in human (THP-1) monocyte/macrophage cells. THP-1 cells were exposed to 27OHChol in the presence of prednisolone followed by evaluation of inflammatory molecules at mRNA and protein levels by quantitative PCR, western blotting, ELISA and flow cytometry. The results revealed that prednisolone suppressed the 27OHChol-mediated expression of various macrophage (M)1 markers, including chemokine ligand 2, C-X-C chemokine motif 10, tumor necrosis factor-α and CD80. Treatment also impaired the 27OHCHol-enhanced migration of monocytic cells, downregulated the 27OHChol-induced cell surface expression of CD14 and inhibited the release of soluble CD14 comparable with a weakened lipopolysaccharide response. Furthermore, prednisolone suppressed the 27OHChol-induced expression of matrix metalloproteinase 9 at the transcriptional and protein level, as well as the phosphorylation of the p65 subunit. Prednisolone increased the transcription of CD163 and CD206 genes, and augmented the 27OHChol-induced transcription of CD163 without upregulating the 27OHChol-induced surface protein level of the gene. The results indicated that prednisolone inhibited the polarization of monocytes/macrophages towards the M1 phenotype, which that the immunostimulatory effects of 27OHCHol were being regulated and the immune responses in conditions that were rich in oxygenated cholesterol molecules were being modulated.

11.
Int J Mol Med ; 43(5): 2177-2186, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30896858

RESUMEN

The epidemiological, animal and cell effects of plant metabolites suggest versatile health benefits of flavonoids. However, whether flavonoids affect the deleterious biological activity of oxygenated cholesterol molecules remains to be elucidated. The present study investigated the effects of 4'­O­methylalpinumisoflavone (mAI) isolated from Maclura tricuspidata (Cudrania tricuspidata) on the 27­hydroxycholesterol (27OHChol)­induced activation of monocytes/macrophages using human THP­1 cells. mAI dose­dependently impaired the expression of C­C motif chemokine ligand (CCL)2 chemokine and the migration of monocytic cells enhanced by 27OHChol. mAI downregulated the surface and cellular levels of CD14 and inhibited the release of soluble CD14. This isoflavone significantly weakened the lipopolysaccharide responses that were enhanced in the presence of 27OHChol, and inhibited the transcription and secretion of the active gene product of matrix metalloproteinase­9. mAI also suppressed the expression of C­C motif chemokine receptor 5 ligands, including CL3 and CCL4, and M1­phenotype markers induced by 27OHChol. Furthermore, mAI impaired phosphorylation of the nuclear factor­κB p65 subunit without affecting the phosphorylation of Akt. These results indicate that mAI inhibits the activation of monocytes/macrophages to the immunostimulatory phenotype in a milieu rich in 27OHChol, suggesting potential benefits of the flavonoid for the treatment of diseases in which the pathogenesis is linked to 27OHChol­induced inflammatory responses.


Asunto(s)
Hidroxicolesteroles/farmacología , Isoflavonas/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Biomarcadores/metabolismo , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quimiocina CCL2/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Humanos , Células Jurkat , Ligandos , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Modelos Biológicos , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Fenotipo , Fosforilación/efectos de los fármacos , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CCR5/metabolismo , Células THP-1 , Factor de Transcripción ReIA/metabolismo
12.
Int Immunopharmacol ; 69: 358-367, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30776644

RESUMEN

27-Hydroxycholesterol (27OHChol) is a bioactive molecule that induces monocytic cell activation and differentiation and thereby participates in immune responses under hypercholesterolemic condition. However, it is unknown whether cyclosporin A (CsA), an immunosuppressant, affects biological effects of 27OHChol. In this study, we investigated whether CsA alters 27OHChol-induced cellular and molecular responses using the human monocyte/macrophage THP-1 cells. Treatment of the cells with CsA resulted in decreased expression of the mDC-specific markers (CD80, CD83 and CD88) induced by 27OHChol. Reduced endocytic activity recovered in the presence of CsA. The drug also inhibited the expressions of MHC class I and II molecules and CD197, a homing molecule of mDCs. We further investigated the outcomes of CsA treatment on the expression of M1 polarization markers and CD14, a component of the innate immune system. The drug decreased transcript levels of genes associated with the M1 polarization of monocytic cells, including CCL2, as well as expression of CD14 and MMP-9 which is involved in soluble CD14 shedding. Taken together, these results indicate that CsA inhibits the 27OHChol-induced differentiation and activation of monocytic cells into a mature dendritic cell (mDC) type and an immuno-stimulatory M1 subset, respectively, thereby modifying immune responses in a milieu rich in cholesterol and oxidized cholesterol molecules.


Asunto(s)
Ciclosporina/farmacología , Hidroxicolesteroles/farmacología , Inmunosupresores/farmacología , Macrófagos/fisiología , Monocitos/fisiología , Diferenciación Celular , Quimiocina CCL2/genética , Citocinas/metabolismo , Humanos , Inmunidad Innata , Inmunización , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Células THP-1 , Células TH1/inmunología
13.
Biochem Biophys Res Commun ; 500(2): 504-510, 2018 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-29678572

RESUMEN

To understand the molecular mechanisms underlying the beneficial effects of sildenafil in animal models of neurological disorders, we investigated the effects of sildenafil on the mitochondrial toxicity induced by ß-amyloid (Aß) peptide. Treatment of HT-22 hippocampal neuronal cells with Aß25∼35 results in increased mitochondrial Ca2+ load, which is subsequently suppressed by sildenafil as well as by diazoxide, a selective opener of the ATP-sensitive K+ channels (KATP). However, the suppressive effects of sildenafil and diazoxide are significantly attenuated by 5-hydroxydecanoic acid (5-HD), a KATP inhibitor. The increased mitochondrial Ca2+ overload is accompanied by decrease in the intracellular ATP concentration, increase in intracellular ROS generation, occurrence of mitochondrial permeability transition, and activation of caspase-9 and cell death. Exposure to sildenafil inhibited the mitochondria-associated changes and cell death induced by Aß. However, the inhibitory effects of sildenafil are abolished or weakened in the presence of 5-HD, suggesting that opening of the mitochondrial KATP is required for sildenafil to exert these effects. Taken together, these results indicate that at the mitochondrial levels, sildenafil plays a protective role towards neuronal cell in an environment rich in Aß, and exerts its effects via the mitochondrial KATP channels-dependent mechanisms.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Mitocondrias/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Canales de Potasio/metabolismo , Citrato de Sildenafil/farmacología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Hipocampo/citología , Ratones , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Biochem Biophys Res Commun ; 497(2): 521-526, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29428726

RESUMEN

To investigate the effects of 7-oxygenated cholesterol molecules on the expression of tight junction proteins, we examined the outcomes effects of 7-ketocholesterol (7K), 7α-hydroxycholesterol (7αOHChol) and 7ß-hydroxycholesterol (7ßOHChol) on the expression of the tight-junction protein zonula occludens-1 (ZO-1) using vascular cells. Vascular smooth muscle cells (VSMCs) constitutively express ZO-1, and this expression remained unaffected in the presence of cholesterol. However, the level of ZO-1 protein decreased after exposure to 7K and, to a lesser extent, 7αOHChol and 7ßOHChol. ZO-1 was translocated to the nucleus following treatment with 7K; this translocation was inhibited by z-VAD-fmk, a pan-caspase inhibitor. ZO-1 protein was found to disintegrate in the aorta of ApoE knockout mice fed a high cholesterol diet, whereas it remained intact in the wild-type control. THP-1 monocyte/macrophage cells, which show no expression of ZO-1, were not influenced by treatment with cholesterol, 7K, and 7ßOHChol. However, the treatment of THP-1 cells with 7αOHChol resulted in ZO-1 expression, which largely remained localized on the cytoplasmic membrane. These results indicate the varying effects of 7-oxygenated cholesterol molecules on the expression and localization of ZO-1 depending on cell types, and suggest the contribution of 7-oxygeneted cholesterol molecules to the structural alteration of tight junctions.


Asunto(s)
Hidroxicolesteroles/metabolismo , Cetocolesteroles/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína de la Zonula Occludens-1/genética , Animales , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación hacia Abajo , Humanos , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , ARN Mensajero/genética , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Regulación hacia Arriba , Proteína de la Zonula Occludens-1/análisis , Proteína de la Zonula Occludens-1/metabolismo
15.
PLoS One ; 12(12): e0189643, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29236764

RESUMEN

Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol.


Asunto(s)
Dexametasona/farmacología , Hidroxicolesteroles/metabolismo , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Línea Celular , Quimiocina CCL2/biosíntesis , Quimiocina CCL2/metabolismo , Quimiotaxis de Leucocito , Regulación hacia Abajo , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción ReIA/metabolismo
16.
Immune Netw ; 17(3): 179-185, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28680379

RESUMEN

We investigated whether diclofenac could influence the development of antigen-presenting cells in an oxygenated cholesterol-rich environment by determining its effects on the 27-hydroxycholesterol (27OHChol)-induced differentiation of monocytic cells into mature dendritic cells (mDCs). Treatment of human THP-1 monocytic cells with diclofenac antagonized the effects of 27OHChol by attenuating dendrite formation and cell attachment and promoting endocytic function. Diclofenac inhibited the transcription and surface expression of the mDC markers of CD80, CD83, and CD88, and reduced the 27OHChol-induced elevation of surface levels of MHC class I and II molecules to the basal levels in a dose-dependent manner. It also reduced the expression of CD197, a molecule involved in DC homing and migration. These results indicate that diclofenac inhibits the differentiation of monocytic cells into mDCs, thereby potentially modulating adaptive immune responses in a milieu rich in cholesterol oxidation products.

17.
Korean J Physiol Pharmacol ; 21(3): 301-308, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28461772

RESUMEN

27-Hydroxycholesterol induces differentiation of monocytic cells into mature dendritic cells, mDCs. In the current study we sought to determine roles of the PI3K and the ERK pathways in the 27OHChol-induced differentiation. Up-regulation of mDC-specific markers like CD80, CD83 and CD88 induced by stimulation with 27OHChol was significantly reduced in the presence of LY294002, an inhibitor of PI3K, and U0126, an inhibitor of ERK. Surface expression of MHC class I and II molecules elevated by 27OHChol was decreased to basal levels in the presence of the inhibitors. Treatment with LY294002 or U0126 resulted in recovery of endocytic activity which was reduced by 27OHChol. CD197 expression and cell adherence enhanced by 27OHChol were attenuated in the presence of the inhibitors. Transcription and surface expression of CD molecules involved in atherosclerosis such as CD105, CD137 and CD166 were also significantly decreased by treatment with LY294002 and U0126. These results mean that the PI3K and the ERK signaling pathways are necessary for differentiation of monocytic cells into mDCs and involved in over-expression of atherosclerosis-associated molecules in response to 27OHChol.

18.
J Steroid Biochem Mol Biol ; 172: 29-35, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28549691

RESUMEN

Investigating differentially expressed proteins in a milieu rich in cholesterol oxidation products, we found via mass spectrometry-based proteomics that surface levels of heat shock protein 60 (HSP60) were upregulated on monocytic cells in the presence of 27-hydroxycholesterol (27OHChol). The elevated levels of cytoplasmic membrane HSP60 were verified via Western blot analysis and visualized by confocal microscopy. Treatment with 27OHChol also resulted in increased levels of cellular HSP60 without altering its transcription. Cholesterol, however, did not affect cell-surface levels and cellular amount of HSP60. GSK 2033, an LXR antagonist, inhibited expression of live X receptor α, but not of HSP60, induced by 27OHChol. Treatment with 27OHChol also resulted in increased release of HSP60 from monocytic cells, but the release was significantly reduced by inhibitors of endoplasmic reticulum-Golgi protein trafficking, brefeldin A and monensin. Results of the current study indicate that 27OHChol upregulates not only cell-surface and cellular levels of HSP60 but also its release from monocytic cells, thereby contributing to activation of the immune system.


Asunto(s)
Chaperonina 60/genética , Hidroxicolesteroles/farmacocinética , Proteínas Mitocondriales/genética , Monocitos/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Brefeldino A/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/inmunología , Membrana Celular/metabolismo , Chaperonina 60/agonistas , Chaperonina 60/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/inmunología , Aparato de Golgi/metabolismo , Humanos , Hidroxicolesteroles/metabolismo , Inmunidad Celular , Receptores X del Hígado/antagonistas & inhibidores , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Proteínas Mitocondriales/agonistas , Proteínas Mitocondriales/metabolismo , Monensina/farmacología , Monocitos/citología , Monocitos/inmunología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sulfonamidas/farmacología , Transcripción Genética
19.
PLoS One ; 12(3): e0173749, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28323848

RESUMEN

We investigated effects of 7-oxygenated cholesterol derivatives present in atherosclerotic lesions, 7α-hydroxycholesterol (7αOHChol), 7ß-hydroxycholesterol (7ßOHChol), and 7-ketocholesterol (7K), on IL-8 expression. Transcript levels of IL-8 and secretion of its corresponding gene product by monocytes/macrophages were enhanced by treatment with 7αOHChol and, to a lesser extent, 7K, but not by 7ßOHChol. The 7-oxygenated cholesterol derivatives, however, did not change transcription of the IL-8 gene in vascular smooth muscle cells. 7αOHChol-induced IL-8 gene transcription was inhibited by cycloheximide and Akt1 downregulation, but not by OxPAPC. Expression of C5a receptor was upregulated after stimulation with 7αOHChol, but not with 7K and 7ßOHChol, and a specific antagonist of C5a receptor inhibited 7αOHChol-induced IL-8 gene expression in a dose dependent manner. Pharmacological inhibitors of PI3K and MEK almost completely inhibited expression of both IL-8 and cell-surface C5a receptor induced by 7αOHChol. These results indicate that 7-oxygenated cholesterol derivatives have differential effects on monocyte/macrophage expression of IL-8 and C5a receptor and that C5a receptor is involved in 7αOHChol-induced IL-8 expression via PI3K and MEK.


Asunto(s)
Hidroxicolesteroles/metabolismo , Interleucina-8/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Compuestos de Anilina/farmacología , Butadienos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Cromonas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Humanos , Hidroxicolesteroles/administración & dosificación , Cetocolesteroles/administración & dosificación , Cetocolesteroles/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Morfolinas/farmacología , Nitrilos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Tetrahidronaftalenos/farmacología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología
20.
Biochem Biophys Res Commun ; 478(3): 1456-61, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27576203

RESUMEN

27-Hydroxycholesterol (27OHChol) is a cholesterol oxidation product that induces inflammation. In the current study we investigated the effects of diclofenac on inflammatory responses caused by 27OHChol using human monocyte/macrophage (THP-1) cells. Transcription and secretion of CCL2, CCL3, and CCL4 chemokines enhanced by 27OHChol were significantly attenuated by diclofenac in a concentration dependent manner. Migrations of monocytic cells and CCR5-positive Jurkat T cells were reduced proportionally to the concentrations of diclofenac. Superproduction of CCL2 and monocytic cell migration induced by 27OHChol plus LPS were significantly attenuated by diclofenac. Diclofenac also attenuated transcription of MMP-9 and release of its active gene product. These results indicate that diclofenac inhibits 27OHChol-induced inflammatory responses, thereby suppressing inflammation in a milieu rich in cholesterol oxidation products.


Asunto(s)
Diclofenaco/farmacología , Hidroxicolesteroles/toxicidad , Inflamación/patología , Línea Celular , Movimiento Celular/efectos de los fármacos , Quimiocina CCL2 , Humanos , Inflamación/metabolismo , Ligandos , Metaloproteinasa 9 de la Matriz/metabolismo , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Receptores CCR5/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...