Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antibodies (Basel) ; 12(4)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37987250

RESUMEN

In cancer treatment, the first-generation, cytotoxic drugs, though effective against cancer cells, also harmed healthy ones. The second-generation targeted cancer cells precisely to inhibit their growth. Enter the third-generation, consisting of immuno-oncology drugs, designed to combat drug resistance and bolster the immune system's defenses. These advanced therapies operate by obstructing the uncontrolled growth and spread of cancer cells through the body, ultimately eliminating them effectively. Within the arsenal of cancer treatment, monoclonal antibodies offer several advantages, including inducing cancer cell apoptosis, precise targeting, prolonged presence in the body, and minimal side effects. A recent development in cancer therapy is Antibody-Drug Conjugates (ADCs), initially developed in the mid-20th century. The second generation of ADCs addressed this issue through innovative antibody modification techniques, such as DAR regulation, amino acid substitutions, incorporation of non-natural amino acids, and enzymatic drug attachment. Currently, a third generation of ADCs is in development. This study presents an overview of 12 available ADCs, reviews 71 recent research papers, and analyzes 128 clinical trial reports. The overarching objective is to gain insights into the prevailing trends in ADC research and development, with a particular focus on emerging frontiers like potential targets, linkers, and drug payloads within the realm of cancer treatment.

2.
J Microbiol Biotechnol ; 32(12): 1615-1621, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36330755

RESUMEN

Tissue regeneration is the ultimate treatment for many degenerative diseases, however, repair and regeneration of damaged organs or tissues remains a challenge. Previously, we showed that B1 Ab and H3 Ab induce stem cells to differentiate into microglia and brown adipocyte-like cells, while trafficking to the brain and heart, respectively. Here, we present data showing that another selected agonist antibody, P1 antibody, induces the migration of cells to the pancreatic islets and differentiates human stem cells into beta-like cells. Interestingly, our results suggest the purified P1 Ab induces beta-like cells from fresh, human CD34+ hematopoietic stem cells and mouse bone marrow. In addition, stem cells with P1 Ab bound to expressed periostin (POSTN), an extracellular matrix protein that regulates tissue remodeling, selectively migrate to mouse pancreatic islets. Thus, these results confirm that our in vivo selection system can be used to identify antibodies from our library which are capable of inducing stem cell differentiation and cell migration to select tissues for the purpose of regenerating and remodeling damaged organ systems.


Asunto(s)
Islotes Pancreáticos , Ratones , Animales , Humanos , Diferenciación Celular , Anticuerpos , Células Madre , Movimiento Celular
3.
Pharmaceutics ; 14(7)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35890318

RESUMEN

Hispolon is a potent anticancer, anti-inflammatory, antioxidant, and antidiabetic agent isolated from Phellinus linteus, an oriental medicinal mushroom. However, the immunomodulatory mechanisms by which hispolon affects macrophages and lymphocytes remain poorly characterized. We investigated the immunomodulatory effects of hispolon on oxidative stress, inflammatory responses, and lymphocyte proliferation using lipopolysaccharide (LPS)-treated RAW264.7 macrophages or mitogen/alloantigen-treated mouse splenocytes. Hispolon inhibited LPS-induced reactive oxygen and nitrogen species (ROS/RNS) generation and decreased total sulfhydryl (SH) levels in a cell-free system and RAW264.7 cells. Hispolon exerted significant anti-inflammatory effects by inhibiting production of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) and activation of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) in LPS-treated RAW264.7 cells. Hispolon also modulated NF-κB and STAT3 activation by suppressing the NF-κB p65 interaction with phospho-IκBα and the STAT3 interaction with JAK1, as determined via coimmunoprecipitation analysis. Additionally, hispolon significantly decreased lymphocyte proliferation, T cell responses and T helper type 1 (Th1)/type 2 (Th2) cytokines production in mitogen/alloantigen-treated splenocytes. We conclude that hispolon exerts immunomodulatory effects on LPS-treated macrophages or mitogen/alloantigen-treated splenocytes through antioxidant, anti-inflammatory, and antiproliferative activities. Thus, hispolon may be a therapeutic agent for treating immune-mediated inflammatory diseases.

4.
Sci Rep ; 11(1): 12004, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099775

RESUMEN

Human granulocyte colony-stimulating factor (G-CSF, this study used Fc-fused recombinant G-CSF; GX-G3) is an important glycoprotein that stimulates the proliferation of granulocytes and white blood cells. Thus, G-CSF treatment has been considered as a crucial regimen to accelerate recovery from chemotherapy-induced neutropenia in cancer patients suffering from non-myeloid malignancy or acute myeloid leukemia. Despite the therapeutic advantages of G-CSF treatment, an assessment of its immunogenicity must be performed to determine whether the production of anti-G-CSF antibodies causes immune-related disorders. We optimized and validated analytical tools by adopting validation parameters for immunogenicity assessment. Using these validated tools, we analyzed serum samples from rats and monkeys injected subcutaneously with GX-G3 (1, 3 or 10 mg/kg once a week for 4 weeks followed by a 4-week recovery period) to determine immunogenicity response and toxicokinetic parameters with serum concentration of GX-G3. Several rats and monkeys were determined to be positive for anti-GX-G3 antibodies. Moreover, the immunogenicity response of GX-G3 was lower in monkeys than in rats, which was relevant to show less inhibition of toxicokinetic profiles in monkeys, at least 1 mg/kg administrated group, compared to rats. These results suggested the establishment and validation for analyzing anti-GX-G3 antibodies and measurement of serum levels of GX-G3 and anti-GX-G3 antibodies, which was related with toxicokinetic profiles. Taken together, this study provides immunogenicity assessment which is closely implicated with toxicokinetic study of GX-G3 in 4-week repeated administrated toxicological studies.


Asunto(s)
Anticuerpos/sangre , Factor Estimulante de Colonias de Granulocitos/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Factores Inmunológicos/administración & dosificación , Proteínas Recombinantes de Fusión/inmunología , Animales , Evaluación Preclínica de Medicamentos/métodos , Ensayo de Inmunoadsorción Enzimática , Femenino , Expresión Génica , Factor Estimulante de Colonias de Granulocitos/genética , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Factores Inmunológicos/genética , Inyecciones Subcutáneas , Macaca fascicularis , Masculino , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética
5.
Toxicol Res ; 34(4): 333-341, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30370008

RESUMEN

Ferulate is a phenolic compound abundant in wheat germ and bran and has been investigated for its beneficial activities. The aim of the present study is to evaluate the efficacy of ferulate against the oxidative stress-induced imbalance of protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and serine/threonine protein phosphatase 2A (PP2A), in connection with our previous finding that oxidative stress-induced imbalance of PTKs and PTPs is linked with proinflammatory nuclear factor-kappa B (NF-κB) activation. To test the effects of ferulate on this process, we utilized two oxidative stress-induced inflammatory models. First, YPEN-1 cells were pretreated with ferulate for 1 hr prior to the administration of 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). Second, 20-month-old Sprague-Dawley rats were fed ferulate for 10 days. After ferulate treatment, the activities of PTKs, PTPs, and PP2A were measured because these proteins either directly or indirectly promote NF-κB activation. Our results revealed that in YPEN-1 cells, ferulate effectively suppressed AAPH-induced increases in reactive oxygen species (ROS) and NF-κB activity, as well as AAPH-induced PTK activation. Furthermore, ferulate also inhibited AAPH-induced PTP and PP2A inactivation. In the aged kidney model, ferulate suppressed aging-induced activation of PTKs and ameliorated aging-induced inactivation of PTPs and PP2A. Thus, herein we demonstrated that ferulate could modulate PTK/PTP balance against oxidative stress-induced inactivation of PTPs and PP2A, which is closely linked with NF-κB activation. Based on these results, the ability of ferulate to modulate oxidative stress-related inflammatory processes is established, which suggests that this compound could act as a novel therapeutic agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...