Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 14(660): eabo6135, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36044599

RESUMEN

T cell receptor (TCR)-based immunotherapy has emerged as a promising therapeutic approach for the treatment of patients with solid cancers. Identifying peptide-human leukocyte antigen (pHLA) complexes highly presented on tumors and rarely expressed on healthy tissue in combination with high-affinity TCRs that when introduced into T cells can redirect T cells to eliminate tumor but not healthy tissue is a key requirement for safe and efficacious TCR-based therapies. To discover promising shared tumor antigens that could be targeted via TCR-based adoptive T cell therapy, we employed population-scale immunopeptidomics using quantitative mass spectrometry across ~1500 tumor and normal tissue samples. We identified an HLA-A*02:01-restricted pan-cancer epitope within the collagen type VI α-3 (COL6A3) gene that is highly presented on tumor stroma across multiple solid cancers due to a tumor-specific alternative splicing event that rarely occurs outside the tumor microenvironment. T cells expressing natural COL6A3-specific TCRs demonstrated only modest activity against cells presenting high copy numbers of COL6A3 pHLAs. One of these TCRs was affinity-enhanced, enabling transduced T cells to specifically eliminate tumors in vivo that expressed similar copy numbers of pHLAs as primary tumor specimens. The enhanced TCR variants exhibited a favorable safety profile with no detectable off-target reactivity, paving the way to initiate clinical trials using COL6A3-specific TCRs to target an array of solid tumors.


Asunto(s)
Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Linfocitos T , Antígenos de Neoplasias , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia Adoptiva/métodos , Proteómica , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/uso terapéutico
2.
Mol Cell Proteomics ; 18(6): 1255-1268, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31154438

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis to most patients. Immunotherapy of GBM is a potentially beneficial treatment option, whose optimal implementation may depend on familiarity with tumor specific antigens, presented as HLA peptides by the GBM cells. Further, early detection of GBM, such as by a routine blood test, may improve survival, even with the current treatment modalities. This study includes large-scale analyses of the HLA peptidome (immunopeptidome) of the plasma-soluble HLA molecules (sHLA) of 142 plasma samples, and the membranal HLA of GBM tumors of 10 of these patients' tumor samples. Tumor samples were fresh-frozen immediately after surgery and the plasma samples were collected before, and at multiple visits after surgery. In total, this HLA peptidome analysis involved 52 different HLA allotypes and resulted in the identification of more than 35,000 different HLA peptides. Strong correlations were observed in the signal intensities and in the repertoires of identified peptides between the tumors and plasma-soluble HLA peptidomes of the individual patients, whereas low correlations were observed between these HLA peptidomes and the tumors' proteomes. HLA peptides derived from Cancer/Testis Antigens (CTAs) were selected based on their presence among the HLA peptidomes of the patients and absence of expression of their source genes from any healthy and essential human tissues, except from immune-privileged sites. Additionally, peptides were selected as potential biomarkers if their levels in the plasma-sHLA peptidome were significantly reduced after the removal of tumor mass. The CTAs identified among the analyzed HLA peptidomes provide new opportunities for personalized immunotherapy and for early diagnosis of GBM.


Asunto(s)
Antígenos de Neoplasias/sangre , Neoplasias Encefálicas/sangre , Glioblastoma/sangre , Antígenos de Histocompatibilidad Clase I/sangre , Péptidos/sangre , Proteoma/metabolismo , Alelos , Biomarcadores de Tumor/sangre , Neoplasias Encefálicas/cirugía , Glioblastoma/cirugía , Humanos
5.
Nature ; 565(7738): 240-245, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30568303

RESUMEN

Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30-50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigens-that is, both unmutated antigens and neoepitopes-may offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-L-lysine carboxymethylcellulose) and granulocyte-macrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Glioblastoma/diagnóstico , Glioblastoma/terapia , Medicina de Precisión/métodos , Adulto , Anciano , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Femenino , Glioblastoma/inmunología , Antígenos HLA-A/inmunología , Humanos , Memoria Inmunológica/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T Colaboradores-Inductores/inmunología , Resultado del Tratamiento
6.
Mol Cell Proteomics ; 17(11): 2132-2145, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30072578

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis to most patients. Immunotherapy of GBM is a potentially beneficial treatment option, whose optimal implementation may depend on familiarity with tumor specific antigens, presented as HLA peptides by the GBM cells. Furthermore, early detection of GBM, such as by a routine blood test, may improve survival, even with the current treatment modalities. This study includes large-scale analyses of the HLA peptidome (immunopeptidome) of the plasma-soluble HLA molecules (sHLA) of 142 plasma samples, and the membranal HLA of GBM tumors of 10 of these patients' tumor samples. Tumor samples were fresh-frozen immediately after surgery and the plasma samples were collected before, and at multiple visits after surgery. In total, this HLA peptidome analysis involved 52 different HLA allotypes and resulted in the identification of more than 35,000 different HLA peptides. Strong correlations were observed in the signal intensities and in the repertoires of identified peptides between the tumors and plasma-soluble HLA peptidomes of the individual patients, whereas low correlations were observed between these HLA peptidomes and the tumors' proteomes. HLA peptides derived from Cancer/Testis Antigens (CTAs) were selected based on their presence among the HLA peptidomes of the patients and absence of expression of their source genes from any healthy and essential human tissues, except from immune-privileged sites. Additionally, peptides were selected as potential biomarkers if their levels in the plasma-sHLA peptidome were significantly reduced after the removal of tumor mass. The CTAs identified among the analyzed HLA peptidomes provide new opportunities for personalized immunotherapy and for early diagnosis of GBM.


Asunto(s)
Antígenos de Neoplasias/sangre , Glioblastoma/sangre , Antígenos HLA/metabolismo , Péptidos/metabolismo , Proteoma/metabolismo , Alelos , Secuencia de Aminoácidos , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/sangre , Membrana Celular/metabolismo , Glioblastoma/cirugía , Humanos , Péptidos/sangre , Péptidos/química , Solubilidad
7.
Proteomics ; 18(12): e1700284, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29505699

RESUMEN

Immunotherapy is revolutionizing cancer treatment and has shown success in particular for tumors with a high mutational load. These effects have been linked to neoantigens derived from patient-specific mutations. To expand efficacious immunotherapy approaches to the vast majority of tumor types and patient populations carrying only a few mutations and maybe not a single presented neoepitope, it is necessary to expand the target space to non-mutated cancer-associated antigens. Mass spectrometry enables the direct and unbiased discovery and selection of tumor-specific human leukocyte antigen (HLA) peptides that can be used to define targets for immunotherapy. Combining these targets into a warehouse allows for multi-target therapy and accelerated clinical application. For precise personalization aimed at optimally ensuring treatment efficacy and safety, it is necessary to assess the presence of the target on each individual patient's tumor. Here we show how LC-MS paired with gene expression data was used to define mRNA biomarkers currently being used as diagnostic test IMADETECT™ for patient inclusion and personalized target selection within two clinical trials (NCT02876510, NCT03247309). Thus, we present a way how to translate HLA peptide presentation into gene expression thresholds for companion diagnostics in immunotherapy considering the peptide-specific correlation to its encoding mRNA.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Antígenos HLA/metabolismo , Inmunoterapia , Neoplasias/metabolismo , Fragmentos de Péptidos/metabolismo , Medicina de Precisión , Proteogenómica/métodos , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/análisis , Antígenos de Neoplasias/inmunología , Toma de Decisiones , Epítopos/inmunología , Epítopos/metabolismo , Antígenos HLA/análisis , Antígenos HLA/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Espectrometría de Masas/métodos , Neoplasias/inmunología , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/inmunología , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA