Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
PLoS One ; 19(5): e0299030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696535

RESUMEN

In recent years, as China experiences economic expansion and its corporations become more global, it has notably become a central hub for cross-border mergers and acquisitions (M&A) on the world stage. The Chinese government, in tandem, leverages these international M&A operations to drive industrial transformation and progress in technology. This research investigates the role of China's industrial policies in shaping cross-border M&A activities by examining recent instances. Findings indicate that relaxing financial barriers and applying specific industrial tactics bolster companies' abilities to secure funding, consequently energizing cross-border M&A initiatives. Several firms in these international mergers and acquisitions are intricately connected to political strategies, markedly affecting the formulation of industrial policies. This assertion is corroborated through the analysis of relevant statistical evidence. The study methodically collects and scrutinizes data to quantitatively depict the current landscape and influencing elements of cross-border M&A, thus providing concrete evidence for policy and business strategy formulation.


Asunto(s)
Industrias , China , Industrias/economía , Humanos , Comercio
2.
Int J Biol Macromol ; 259(Pt 2): 129395, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218285

RESUMEN

Vibrio parahaemolyticus causes diseases in aquatic organisms, leading to substantial financial losses to the aquaculture industry; its flagellin F (flaF) protein triggers severe inflammation in host cells. To enhance the understanding of the function of flaF in V. parahaemolyticus infection, in this study, a flaF-deficient mutant was constructed by employing two-step homologous recombination. The flaF-deficient mutant induced a significantly lower toll-like receptor 5 (TLR5) expression and apoptosis in fish intestinal epithelial cells than the wild-type V. parahaemolyticus. Furthermore, fluorescence labelling and microscopy analysis of TLR5 showed that V. parahaemolyticus and its mutant strain significantly enhanced TLR5 expression. Additionally, the findings suggest that flaF deletion did not significantly affect the expression of myeloid differentiation factor 88 (MyD88) and interleukin-8 (IL-8) induced by V.parahaemolyticus. In summary, V. parahaemolyticus induced a TLR5-dependent inflammatory response and apoptosis through MyD88, which was observed to be influenced by flaF deletion. In this study, we obtained stable mutants of V. parahaemolyticus via target gene deletion-which is a rapid and effective approach-and compared the induction of inflammatory response and apoptosis by V. parahaemolyticus and its mutant strain, providing novel perspectives for functional gene research in V. parahaemolyticus.


Asunto(s)
Perciformes , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/genética , Flagelina/genética , Flagelina/farmacología , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Perciformes/genética
3.
J Pharm Sci ; 113(1): 176-190, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871778

RESUMEN

Triantennary N-acetyl-D galactosamine (GalNAc)3-conjugated small interfering RNA (siRNA) have majorly advanced the development of RNA-based therapeutics. Chemically stabilized GalNAc-siRNAs exhibit extensive albeit capacity-limited (nonlinear) distribution into hepatocytes with additional complexities in intracellular liver disposition and pharmacology. A mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) model of GalNAc-siRNA was developed to i) quantitate ASGPR-mediated disposition and downstream RNA-induced silencing complex (RISC)-dependent pharmacology following intravenous (IV) and subcutaneous (SC) dosing, ii) assess the kinetics of formed active metabolite, iii) leverage, as an example, published experimental data for givosiran, and iv) demonstrate PK translation across two preclinical species (rat and monkey) with subsequent prediction of human plasma PK. The structural model is based on competition between parent and formed active metabolite for occupancy and uptake via ASGPR into hepatocytes, intracellular sequestration and degradation, and downstream engagement of RNA-induced silencing complex (RISC) governing target mRNA degradation. The model jointly and accurately captured available concentration-time profiles of givosiran and/or AS(N-1)3' givosiran in rat and/or monkey plasma, liver, and/or kidney following givosiran administered both IV and SC. RISC-dependent gene silencing of ALAS1 mRNA was well-characterized. The model estimated an in vivo affinity (KD) value of 27.7 nM for GalNAc-ASGPR and weight-based allometric exponents of -0.27 and -0.24 for SC absorption and intracellular (endolysosomal) degradation rate constants. The model well-predicted reported givosiran plasma PK profiles in humans. PK simulations revealed net-shifts in liver-to-kidney distribution ratios with increasing IV and SC dose. Importantly, decreases in the relative liver uptake efficiency were demonstrated following IV and, to a lesser extent, following SC dosing explained by differential ASGPR occupancy profiles over time.


Asunto(s)
Galactosamina , Complejo Silenciador Inducido por ARN , Humanos , Ratas , Animales , ARN Interferente Pequeño/genética , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Silenciador del Gen , Haplorrinos/genética , Haplorrinos/metabolismo
4.
Small ; 20(23): e2307997, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148323

RESUMEN

Sulfide solid electrolytes (SSEs) are highly wanted for solid-state batteries (SSBs). While their liquid-phase synthesis is advantageous over their solid-phase strategy in scalable production, it confronts other challenges, such as low-purity products, user-unfriendly solvents, energy-inefficient solvent removal, and unsatisfactory performance. This article demonstrates that a suspension-based solvothermal method using single oxygen-free solvents can solve those problems. Experimental observations and theoretical calculations together show that the basic function of suspension-treatment is "interparticle-coupled unification", that is, even individually insoluble solid precursors can mutually adsorb and amalgamate to generate uniform composites in nonpolar solvents. This anti-intuitive concept is established when investigating the origins of impurities in SSEs electrolytes made by the conventional tetrahydrofuran-ethanol method and then searching for new solvents. Its generality is supported by four eligible alkane solvents and four types of SSEs. The electrochemical assessments on the former three SSEs show that they are competitive with their counterparts in the literature. Moreover, the synthesized SSEs presents excellent battery performance, showing great potential for practical applications.

5.
Neuroimage ; 283: 120426, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37898378

RESUMEN

The level of consciousness undergoes continuous alterations during anesthesia. Prior to the onset of propofol-induced complete unconsciousness, degraded levels of behavioral responsiveness can be observed. However, a reliable index to monitor altered consciousness levels during anesthesia has not been sufficiently investigated. In this study, we obtained 60-channel EEG data from 24 healthy participants during an ultra-slow propofol infusion protocol starting with an initial concentration of 1 µg/ml and a stepwise increase of 0.2 µg/ml in concentration. Consecutive auditory stimuli were delivered every 5 to 6 s, and the response time to the stimuli was used to assess the responsiveness levels. We calculated the spectral slope in a time-resolved manner by extracting 5-second EEG segments at each auditory stimulus and estimated their correlation with the corresponding response time. Our results demonstrated that during slow propofol infusion, the response time to external stimuli increased, while the EEG spectral slope, fitted at 15-45 Hz, became steeper, and a significant negative correlation was observed between them. Moreover, the spectral slope further steepened at deeper anesthetic levels and became flatter during anesthesia recovery. We verified these findings using an external dataset. Additionally, we found that the spectral slope of frontal electrodes over the prefrontal lobe had the best performance in predicting the response time. Overall, this study used a time-resolved analysis to suggest that the EEG spectral slope could reliably track continuously altered consciousness levels during propofol anesthesia. Furthermore, the frontal spectral slope may be a promising index for clinical monitoring of anesthesia depth.


Asunto(s)
Anestesia , Propofol , Humanos , Propofol/farmacología , Estado de Conciencia/fisiología , Electroencefalografía , Inconsciencia/inducido químicamente , Anestésicos Intravenosos/farmacología
6.
Mol Cancer Res ; 21(12): 1288-1302, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584671

RESUMEN

Constraints on the p53 tumor suppressor pathway have long been associated with the progression, therapeutic resistance, and poor prognosis of melanoma, the most aggressive form of skin cancer. Likewise, the insulin-like growth factor type 1 receptor (IGF1R) is recognized as an essential coordinator of transformation, proliferation, survival, and migration of melanoma cells. Given that ß-arrestin (ß-arr) system critically governs the anti/pro-tumorigenic p53/IGF1R signaling pathways through their common E3 ubiquitin-protein ligase MDM2, we explore whether unbalancing this system downstream of IGF1R can enhance the response of melanoma cells to chemotherapy. Altering ß-arr expression demonstrated that both ß-arr1-silencing and ß-arr2-overexpression (-ß-arr1/+ß-arr2) facilitated nuclear-to-cytosolic MDM2 translocation accompanied by decreased IGF1R expression, while increasing p53 levels, resulting in reduced cell proliferation/survival. Imbalance towards ß-arr2 (-ß-arr1/+ß-arr2) synergizes with the chemotherapeutic agent, dacarbazine, in promoting melanoma cell toxicity. In both 3D spheroid models and in vivo in zebrafish models, this combination strategy, through dual IGF1R downregulation/p53 activation, limits melanoma cell growth, survival and metastatic spread. In clinical settings, analysis of the TCGA-SKCM patient cohort confirms ß-arr1-/ß-arr2+ imbalance as a metastatic melanoma vulnerability that may enhance therapeutic benefit. Our findings suggest that under steady-state conditions, IGF1R/p53-tumor promotion/suppression status-quo is preserved by ß-arr1/2 homeostasis. Biasing this balance towards ß-arr2 can limit the protumorigenic IGF1R activities while enhancing p53 activity, thus reducing multiple cancer-sustaining mechanisms. Combined with other therapeutics, this strategy improves patient responses and outcomes to therapies relying on p53 or IGF1R pathways. IMPLICATIONS: Altogether, ß-arrestin system bias downstream IGF1R is an important metastatic melanoma vulnerability that may be conductive for therapeutic benefit.


Asunto(s)
Arrestinas , Melanoma , Animales , Humanos , beta-Arrestinas/metabolismo , Arrestinas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/metabolismo , beta-Arrestina 1/metabolismo , Isoformas de Proteínas/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Arrestina beta 2/metabolismo , Línea Celular Tumoral , Receptor IGF Tipo 1/metabolismo
7.
ACS Appl Mater Interfaces ; 15(34): 40633-40647, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37581568

RESUMEN

In the field of lithium-sulfur batteries (LSBs) and all-solid-state batteries, lithium sulfide (Li2S) is a critical raw material. However, its practical application is greatly hindered by its high price due to its deliquescent property and production at high temperatures (above 700 °C) with carbon emission. Hereby, we report a new method of preparing Li2S, in air and at low temperatures (∼200 °C), which presents enriched and surprising chemistry. The synthesis relies on the solid-state reaction between inexpensive and air-stable raw materials of lithium hydroxide (LiOH) and sulfur (S), where lithium sulfite (Li2SO3), lithium thiosulfate (Li2S2O3), and water are three major byproducts. About 57% of lithium from LiOH is converted into Li2S, corresponding to a material cost of ∼$64.9/kg_Li2S, less than 10% of the commercial price. The success of conducting this water-producing reaction in air lies in three-fold: (1) Li2S is stable with oxygen below 220 °C; (2) the use of excess S can prevent Li2S from water attack, by forming lithium polysulfides (Li2Sn); and (3) the byproduct water can be expelled out of the reaction system by the carrier gas and also absorbed by LiOH to form LiOH·H2O. Two interesting and beneficial phenomena, i.e., the anti-hydrolysis of Li2Sn and the decomposition of Li2S2O3 to recover Li2S, are explained with density functional theory computations. Furthermore, our homemade Li2S (h-Li2S) is at least comparable with the commercial Li2S (c-Li2S), when being tested as cathode materials for LSBs.

8.
Macromol Biosci ; 23(12): e2300149, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37571815

RESUMEN

Electrical stimulation (ES) within a conductive scaffold is potentially beneficial in encouraging the differentiation of stem cells toward a neuronal phenotype. To improve stem cell-based regenerative therapies, it is essential to use electroconductive scaffolds with appropriate stiffnesses to regulate the amount and location of ES delivery. Herein, biodegradable electroconductive substrates with different stiffnesses are fabricated from chitosan-grafted-polyaniline (CS-g-PANI) copolymers. Human mesenchymal stem cells (hMSCs) cultured on soft conductive scaffolds show a morphological change with significant filopodial elongation after electrically stimulated culture along with upregulation of neuronal markers and downregulation of glial markers. Compared to stiff conductive scaffolds and non-conductive CS scaffolds, soft conductive CS-g-PANI scaffolds promote increased expression of microtubule-associated protein 2 (MAP2) and neurofilament heavy chain (NF-H) after application of ES. At the same time, there is a decrease in the expression of the glial markers glial fibrillary acidic protein (GFAP) and vimentin after ES. Furthermore, the elevation of intracellular calcium [Ca2+ ] during spontaneous, cell-generated Ca2+ transients further suggests that electric field stimulation of hMSCs cultured on conductive substrates can promote a neural-like phenotype. The findings suggest that the combination of the soft conductive CS-g-PANI substrate and ES is a promising new tool for enhancing neuronal tissue engineering outcomes.


Asunto(s)
Células Madre Mesenquimatosas , Ingeniería de Tejidos , Humanos , Neuronas , Diferenciación Celular , Estimulación Eléctrica , Andamios del Tejido
9.
Dalton Trans ; 52(33): 11716-11724, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37555387

RESUMEN

The transformation from LiNi1-x-yCoxMnyO2 (NCM) cathodes to Co-free LiNi1-xMnxO2 (NM) cathodes is considered as an effective solution for the electric vehicle (EV) industry to deal with the high cost of cobalt. However, severe Li/Ni disorder, structural instability and poor cycling stability are the main obstacles to their practical application. Al doping has proven to be an effective method to improve the electrochemical performance of Ni-rich NCMs. However, with regard to Ni-rich Co-free NM cathodes, the influence of Al doping on the structural stability and electrochemical performance of NM cathodes is still not clear. In this work, Al doped LiNi0.8Mn0.2-xAlxO2 cathodes are designed and their structural stability and electrochemical performance are investigated by a combination of XRD, SEM, TEM, CV, GITT, cycling testing and EIS techniques. As a result, Al doping can effectively inhibit Li/Ni disorder and improve the structural and thermal stability. In detail, 5% is the optimal doping amount for LiNi0.8Mn0.2O2 cathodes to obtain the best electrochemical performance and the LiNi0.8Mn0.15Al0.05O2 cathode shows an excellent capacity retention of 91.97% after 300 cycles at 3.0-4.3 V. This work provides an effective strategy for the development of Ni-rich Co-free NM cathodes.

10.
Oral Dis ; 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37338083

RESUMEN

OBJECTIVES: The objectives of the study was to discuss the effect and mechanism of fluctuant glucose (FG) on implant osseointegration in type 2 diabetic mellitus (T2DM). MATERIALS AND METHODS: Rats were divided into control, T2DM and FG group, and the implants were inserted into their femurs. Micro-CT and histological analysis were used to evaluate the effect on osseointegration in vivo. And we investigated the effect of different conditions (normal, control, high glucose, and FG medium) on rat osteoblast in vitro. Then transmission electron microscope (TEM) and Western blot were used to evaluate the endoplasmic reticulum stress (ERS) response. Finally, 4-PBA, an inhibitor of ERS, was added into different conditions to observe the functions of osteoblast. RESULTS: In vivo, Micro-CT and histological analysis showed that the percentage of osseointegration in FG rats were lower than other two group. In vitro, the results demonstrated that the adhesion of the cells becomes worst, and osteogenic ability was also severely impaired in FG group. In addition, FG could induce more serious ERS and 4-PBA could improve the dysfunction of osteoblasts induced by FG. CONCLUSION: Fluctuant glucose could restrain the implant osseointegration in T2DM, and the effect was more obvious than consistent high glucose by a possible mechanism of activation ERS pathway.

11.
Int J Biol Macromol ; 244: 125404, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37327919

RESUMEN

The marine pathogen Vibrio parahaemolyticus has caused huge economic losses to aquaculture. Flagellin is a key bacterial virulence factor that induces an inflammatory response via activation of Toll-like receptor 5 (TLR5) signaling. Herein, to explore the inflammatory activity of V. parahaemolyticus flagellins (flaA, flaB, flaC, flaD, flaE, and flaF), we investigated their ability to induce apoptosis in a fish cell line. All six flagellins induced severe apoptosis. Moreover, treatment with V. parahaemolyticus flagellins increased TLR5 and myeloid differentiation factor 88 (MyD88) expression and the production of TNF-α and IL-8 significantly. This indicated that flagellins might induce a TLR5-meditated immune response via an MyD88-dependent pathway. FlaF exhibited the strongest immunostimulatory effect; therefore, the interaction between TLR5 and flaF was screened using the yeast two-hybrid system. A significant interaction between the two proteins was observed, indicating that flaF binds directly to TLR5. Finally, the amino acids that participate in the TLR5-flaF interaction were identified using molecular simulation, which indicated three binding sites. These results deepen our understanding of the immunogenic properties of flagellins from V. parahaemolyticus, which could be used for vaccine development in the future.


Asunto(s)
Flagelina , Vibrio parahaemolyticus , Animales , Flagelina/química , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal
12.
Nat Biomed Eng ; 7(10): 1321-1334, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37127710

RESUMEN

Serial assessment of the biomechanical properties of tissues can be used to aid the early detection and management of pathophysiological conditions, to track the evolution of lesions and to evaluate the progress of rehabilitation. However, current methods are invasive, can be used only for short-term measurements, or have insufficient penetration depth or spatial resolution. Here we describe a stretchable ultrasonic array for performing serial non-invasive elastographic measurements of tissues up to 4 cm beneath the skin at a spatial resolution of 0.5 mm. The array conforms to human skin and acoustically couples with it, allowing for accurate elastographic imaging, which we validated via magnetic resonance elastography. We used the device to map three-dimensional distributions of the Young's modulus of tissues ex vivo, to detect microstructural damage in the muscles of volunteers before the onset of soreness and to monitor the dynamic recovery process of muscle injuries during physiotherapies. The technology may facilitate the diagnosis and treatment of diseases affecting tissue biomechanics.

13.
Clin Interv Aging ; 18: 827-834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229150

RESUMEN

Background: Recurrent of local kyphosis after percutaneous kyphoplasty (PKP) is rarely reported and discussed. Literatures reported that re-kyphosis is usually a consequence of refractures of augmented or adjacent vertebra. However, whether re-kyphosis should be considered as a complication of refractures and has an impact on clinical efficacy of PKP during follow-up time is unknown. The purpose of this study is to evaluate the related risk factors and clinical significance of the recurrent of local kyphosis in osteoporotic vertebral fracture (OVF) patients without refractures. Patients and Methods: A total of 143 patients who underwent single-level PKP were recruited and assigned into the re-kyphosis group and non-re-kyphosis group. Clinical and radiographic data were collected and compared between the two groups. Then, multivariate logistic regression analyses were conducted to identify the related risk factors. Results: During follow-up, 16 of the 143 patients presented postoperative re-kyphosis. The average local kyphosis angle increased from 11.81±8.60° postoperatively to 25.13±8.91° at the final follow-up which showed a statistically significant difference (p<0.05). Both groups had significant improvements in postoperative visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores compared to their preoperative values (p<0.05). However, in the re-kyphosis group at final follow-up, the VAS and ODI scores showed worsening compared to the postoperative scores. Logistic regression analysis showed that disc-endplate complex injury (OR=17.46, p=0.003); local kyphosis angle correction (OR=1.84, p<0.001); and vertebral height restoration (OR=1.15, p=0.003) were risk factors for re-kyphosis. Conclusion: Re-kyphosis is not rare in patients with osteoporotic vertebral fracture and tends to have an inferior prognosis following PKP surgery. Patients with disc-endplate complex injury and more correction of vertebral height and kyphosis angle are at a higher risk for re-kyphosis after PKP surgery than others.


Asunto(s)
Fracturas por Compresión , Cifoplastia , Cifosis , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Humanos , Cifoplastia/efectos adversos , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/cirugía , Fracturas de la Columna Vertebral/etiología , Fracturas por Compresión/diagnóstico por imagen , Fracturas por Compresión/cirugía , Fracturas por Compresión/etiología , Estudios Retrospectivos , Cifosis/diagnóstico por imagen , Cifosis/etiología , Cifosis/cirugía , Resultado del Tratamiento , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/cirugía , Fracturas Osteoporóticas/etiología , Cementos para Huesos
14.
Int Immunopharmacol ; 120: 110308, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37192551

RESUMEN

Inflammation plays a crucial role in the physical response to danger signals, the elimination of toxic stimuli, and the restoration of homeostasis. However, dysregulated inflammatory responses lead to tissue damage, and chronic inflammation can disrupt osteogenic-osteoclastic homeostasis, ultimately leading to bone loss. Maresin1 (MaR1), a member of the specialized pro-resolving mediators (SPMs) family, has been found to possess significant anti-inflammatory, anti-allergic, pro-hemolytic, pro-healing, and pain-relieving properties. MaR1 is synthesized by macrophages (Mφs) and omega-3 fatty acids, and it may have the potential to promote bone homeostasis and treat inflammatory bone diseases. MaR1 has been found to stimulate osteoblast proliferation through leucine-rich repeat G protein-coupled receptor 6 (LGR6). It also activates Mφ phagocytosis and M2-type polarization, which helps to control the immune system. MaR1 can regulate T cells to exert anti-inflammatory effects and inhibit neutrophil infiltration and recruitment. In addition, MaR1 is involved in antioxidant signaling, including nuclear factor erythroid 2-related factor 2 (NRF2). It has also been found to promote the autophagic behavior of periodontal ligament stem cells, stimulate Mφs against pathogenic bacteria, and regulate tissue regeneration and repair. In summary, this review provides new information and a comprehensive overview of the critical roles of MaR1 in inflammatory bone diseases, indicating its potential as a therapeutic approach for managing skeletal metabolism and inflammatory bone diseases.


Asunto(s)
Enfermedades Óseas , Inflamación , Humanos , Inflamación/tratamiento farmacológico , Macrófagos , Fagocitosis , Antiinflamatorios/farmacología , Enfermedades Óseas/tratamiento farmacológico , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Ácidos Docosahexaenoicos/metabolismo
15.
Adv Mater ; 35(28): e2300998, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37156730

RESUMEN

Although gel polymer electrolytes (GPEs) represent a promising candidate to address the individual limitations of liquid and solid electrolytes, their extensive development is still hindered due to the veiled Li-ion conduction mechanism. Herein, the related mechanism in GPEs is extensively studied by developing an in situ polymerized GPE comprising fluoroethylene carbonate (FEC) solvent and carbonate ester segments (F-GPE). Practically, although with high dielectric constant, FEC fails to effectively transport Li ions when acting as the sole solvent. By sharp contrast, F-GPE demonstrates superior electrochemical performances, and the related Li-ion transfer mechanism is investigated using molecular dynamics simulations and 7 Li/6 Li solid-state nNMR spectroscopy. The polymer segments are extended with the swelling of FEC, then an electron-delocalization interface layer is generated between abundant electron-rich groups of FEC and the polymer ingredients, which works as an electron-rich "Milky Way" and facilitates the rapid transfer of Li ions by lowering the diffusion barrier dramatically, resulting in a high conductivity of 2.47 × 10-4  S cm-1 and a small polarization of about 20 mV for Li//Li symmetric cell after 8000 h. Remarkably, FEC provides high flame-retardancy and makes F-GPE remains stable under ignition and puncture tests.


Asunto(s)
Electrólitos , Compuestos de Vinilo , Carbonatos , Geles , Litio , Polímeros
16.
ACS Appl Mater Interfaces ; 15(14): 18252-18261, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010228

RESUMEN

Flexible solid-state polymer electrolytes (SPEs) enable intimate contact with the electrode and reduce the interfacial impedance for all-solid-state lithium batteries (ASSLBs). However, the low ionic conductivity and poor mechanical strength restrict the development of SPEs. In this work, the chloride superionic conductor Li2ZrCl6 (LZC) is innovatively introduced into the poly(ethylene oxide) (PEO)-based SPE to address these issues since LZC is crucial for improving the ionic conductivity and enhancing the mechanical strength. The as-prepared electrolyte provides a high ionic conductivity of 5.98 × 10-4 S cm-1 at 60 °C and a high Li-ion transference number of 0.44. More importantly, the interaction between LZC and PEO is investigated using FT-IR and Raman spectroscopy, which is conducive to inhibiting the decomposition of PEO and beneficial to the uniform deposition of Li ions. Therefore, a minor polarization voltage of 30 mV is exhibited for the Li||Li cell after cycling for 1000 h. The LiFePO4||Li ASSLB with 1% LZC-added composite electrolyte (CPE-1% LZC) demonstrates excellent cycling performance with a capacity of 145.4 mA h g-1 after 400 cycles at 0.5 C. This work combines the advantages of chloride and polymer electrolytes, exhibiting great potential in the next generation of all-solid-state lithium metal batteries.

17.
BMC Musculoskelet Disord ; 24(1): 166, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879207

RESUMEN

BACKGROUND: Thoracolumbar fascia injury (FI) is rarely discussed in osteoporotic vertebral fracture (OVF) patients in previous literature and it is usually neglected and treated as an unmeaning phenomenon. We aimed to evaluate the characteristics of the thoracolumbar fascia injury and further discuss its clinical significance in the treatment of kyphoplasty for osteoporotic vertebral fracture (OVF) patients. METHODS: Based on the presence or absence of FI, 223 OVF patients were divided into two groups. The demographics of patients with and without FI were compared. The visual analogue scale and Oswestry disability index scores were compared preoperatively and after PKP treatment between these groups. RESULTS: Thoracolumbar fascia injuries were observed in 27.8% of patients. Most FI showed a multi-level distribution pattern which involved a mean of 3.3 levels. Location of fractures, severity of fractures and severity of trauma were significantly different between patients with and without FI. In further comparison, severity of trauma was significantly different between patients with severe and non-severe FI. In patients with FI, VAS and ODI scores of 3 days and 1 month after PKP treatment were significantly worse compared to those without FI. It showed the same trend in VAS and ODI scores in patients with severe FI when compared to those patients with non-severe FI. CONCLUSIONS: FI is not rare in OVF patients and presents multiple levels of involvement. The more serious trauma suffered, the more severe thoracolumbar fascia injury presented. The presence of FI which was related to residual acute back pain significantly affected the effectiveness of PKP in treating OVFs. TRIAL REGISTRATION: retrospectively registered.


Asunto(s)
Cifoplastia , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Humanos , Fracturas de la Columna Vertebral/complicaciones , Fracturas de la Columna Vertebral/diagnóstico por imagen , Columna Vertebral , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/cirugía , Fascia
18.
Front Physiol ; 14: 1136973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875028

RESUMEN

Soft tissue seal around implant prostheses is considered the primary barrier against adverse external stimuli and is a critical factor in maintaining dental implants' stability. Soft tissue seal is formed mainly by the adhesion of epithelial tissue and fibrous connective tissue to the transmembrane portion of the implant. Type 2 diabetes mellitus (T2DM) is one of the risk factors for peri-implant inflammation, and peri-implant disease may be triggered by dysfunction of the soft tissue barrier around dental implants. This is increasingly considered a promising target for disease treatment and management. However, many studies have demonstrated that pathogenic bacterial infestation, gingival immune inflammation, overactive matrix metalloproteinases (MMPs), impaired wound healing processes and excessive oxidative stress may trigger poor peri-implant soft tissue sealing, which may be more severe in the T2DM state. This article reviews the structure of peri-implant soft tissue seal, peri-implant disease and treatment, and moderating mechanisms of impaired soft tissue seal around implants due to T2DM to inform the development of treatment strategies for dental implants in patients with dental defects.

20.
Bone ; 167: 116643, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36513279

RESUMEN

The mechanism of the impact of hyperlipidemia on bone tissue homeostasis is unclear, and the role of lipophagy is yet to be investigated. This study investigated changes in lipophagy and osteogenesis levels under hyperlipemic conditions and explored the effects of lipophagy on bone regeneration. In vivo, femurs of mice with diet-induced moderate hyperlipidemia were ground out with a ball drill to create defects. In vitro, mouse osteoblast cell lines were grown in two different concentrations of the high-fat medium. We found that at hyperphysiological of lipid conditions, activation of lipophagy restored osteoblast function in a way, and similar results were observed in mice with diet-induced hyperlipidemia. Still, at suprahyperphysiological concentrations of lipid culture, the activation of lipophagy further inhibited osteogenesis, and inhibition of autophagy instead promoted osteogenesis to a small extent. These results demonstrate that lipophagy functions differently in diverse high-fat environments, suggesting that cellular and organismal changes in response to high-fat stimuli are dynamic. This may provide new ideas for improving bone dysfunction caused by lipid metabolism disorders.


Asunto(s)
Hiperlipidemias , Metabolismo de los Lípidos , Animales , Ratones , Metabolismo de los Lípidos/fisiología , Osteogénesis , Autofagia , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA