Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 257: 116331, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663323

RESUMEN

The rapid and precise detection of pathogenic agents is critical for public health and societal stability. The detection of biological warfare agents (BWAs) is especially vital within military and counter-terrorism contexts, essential in defending against biological threats. Traditional methods, such as polymerase chain reaction (PCR), are limited by their need for specific settings, impacting their adaptability and versatility. This study introduces a cell-free biosensor for BWA detection by converting the 16S rRNA of targeted pathogens into detectable functional protein molecules. The modular nature of this approach allows for the flexible configuration of pathogen detection, enabling the simultaneous identification of multiple pathogenic 16S rRNAs through customized reporter proteins for each targeted sequence. Furthermore, we demonstrate how this method integrates with techniques utilizing retroreflective Janus particles (RJPs) for facile and highly sensitive pathogen detection. The cell-free biosensor, employing RJPs to measure the reflection of non-chromatic white light, can detect 16S rRNA from BWAs at femtomolar levels, corresponding to tens of colony-forming units per milliliter of pathogenic bacteria. These findings represent a significant advancement in pathogen detection, offering a more efficient and accessible alternative to conventional methodologies.


Asunto(s)
Armas Biológicas , Técnicas Biosensibles , ARN Ribosómico 16S , Técnicas Biosensibles/métodos , ARN Ribosómico 16S/genética , Humanos , Bacterias/aislamiento & purificación , Bacterias/genética , Límite de Detección , Sistema Libre de Células
2.
Anal Chim Acta ; 1282: 341928, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37923413

RESUMEN

BACKGROUND: Detection of tumor biomarkers in body fluids is a significant advancement in cancer treatment because it allows diagnosis without invasive tissue biopsies. Nucleases have long been regarded as a potential class of biomarkers that can indicate the occurrence and progression of cancers. Among these, flap endonuclease 1 (FEN1) plays an important role in DNA replication and repair, and also overexpressed in abnormally proliferating cells such as cancer cells. FEN1 is thus considered to be a potential biomarker as well as a target for cancer therapy. RESULTS: We developed a novel method for detecting FEN1 based on its specific endonuclease activity which incises bifurcated nucleic acids (flaps), in combination with in vitro transcription. Developed method uses a simple DNA structure (substrate DNA) carrying a short 5'-flap sequence, and a single-stranded sensor DNA encoding the Broccoli light-up aptamer. When the assay mixture was supplied with a FEN1-containing sample, the flap sequence encoding the sense sequence of T7 promoter was cleaved and released from the substrate DNA. Because the sensor DNA was designed to carry the Broccoli RNA aptamer under the antisense sequence of T7 promoter, hybridization of the excised flap onto the sensor DNA initiated the transcription of the Broccoli RNA aptamer, enabling determination of the FEN1 titer based on the fluorescence of transcribed Broccoli aptamer. By using a combination of FEN1-mediated generation of a short oligonucleotide and subsequent oligonucleotide-dependent in vitro transcription, this method could detect FEN1 in biological samples within 1 h. SIGNIFICANCE AND NOVELTY: Developed method enables the detection of FEN1 by a simple one-pot reaction. It can detect sub-nanomolar concentrations of FEN1 within an hour, and has the potential to be used for cancer diagnosis, prognosis, and drug screening. It also enables easy identification of compounds that inhibit FEN1 activity and is thus a versatile platform for screening anti-cancer drugs. We anticipate that the basic principles of this assay can be applied to detect other biomolecules, such as nucleic acids.


Asunto(s)
Aptámeros de Nucleótidos , Ácidos Nucleicos , Biomarcadores de Tumor/genética , Endonucleasas de ADN Solapado/genética , ADN de Cadena Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...