Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
J Med Food ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207254

RESUMEN

Fubai chrysanthemum is a kind of traditional Chinese medicine, which can be used as a common food, and is commonly used to improve and relieve visual fatigue. However, its pharmacodynamic material basis and action mechanisms in relieving visual fatigue have not been systematically studied. In this article, 11 absorbed ingredients from Fubai chrysanthemum were detected in rat plasma. Then, the target network pharmacology and KEGG pathway analysis were performed. It was found that Fubai chrysanthemum could inhibit various apoptotic cells and reduce oxidative damage of eyes by regulating the apoptosis pathway, thus alleviating visual fatigue. Further in vitro experiments showed that Fubai chrysanthemum could effectively protect against oxidation damage of adult retinal pigment epithelial cells (ARPE-19), retinal ganglion cells (RGC-5), and lens. The results of cell experiments showed that Fubai chrysanthemum could increase the cell activity, GSH content, and SOD content of ARPE-19 and RGC-5 after oxidative injury, while decreasing the IL-18 content. Similarly, in the study of lens transparency, we found that Fubai chrysanthemum could effectively alleviate the oxidative damage degree of the lens, and significantly increase the content of CAT, GSH, and SOD. The above results suggested that Fubai chrysanthemum could play an important role in alleviating visual fatigue through regulating cell apoptosis and antioxidative damage.

2.
Anal Bioanal Chem ; 416(19): 4275-4288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853180

RESUMEN

Radix ginseng and Schisandra chinensis have been extensively documented in traditional Chinese medicine (TCM) for their potential efficacy in treating dementia. However, the precise mechanism of their therapeutic effects remains to be fully elucidated. In this study, air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) and network pharmacology are used to investigate the pharmacodynamics and mechanism underlying the herbal combination consisting of Radix ginseng-Schisandra chinensis (RS) in a rodent model for Alzheimer's disease (AD). Brain histopathological findings suggested that RS attenuates hippocampal damage in AD mice, making this combination a potential AD treatment. Twenty-eight biomarkers were identified by spatial metabolomics analysis, which are intricately linked to neuroinflammation, neurotransmitter imbalance, energy deficiency, oxidative stress, and aberrant fatty acid metabolism in AD. The total extract of RS (TE) affected 22 of these biomarkers, with the small molecule components of RS (SN) significantly influencing 19 and the large molecule components of RS (PR) impacting 14. Nine small molecule components are likely to dominate the pharmacodynamics of RS. We constructed a target interaction network based on the corresponding bioactivities that revealed relationships amongst 11 key biomarkers, 8 active ingredients and 12 critical targets. This research illustrates the immense potential of spatial metabolomics and network pharmacology in the study of TCM, revealing the targets and mechanisms underlying herbal formulas.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Metabolómica , Farmacología en Red , Panax , Schisandra , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Metabolómica/métodos , Panax/química , Schisandra/química , Farmacología en Red/métodos , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/farmacocinética , Masculino , Biomarcadores/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
3.
J Ethnopharmacol ; 325: 117815, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38309487

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Tribulus terrestris L. (TT) is extensively documented in the Tibetan medical literature 'Si Bu Yi Dian', has been used to treat diabetes mellitus for more than a thousand years. However, the underlying mechanisms and comprehensive effects of TT on diabetes have yet to be investigated. AIM OF THE STUDY: The aim of the study was to systemically elucidate the potential mechanisms of TT in treating diabetes mellitus, and further investigate the therapeutic effects of the water extract, small molecular components and saccharides from TT. MATERIALS AND METHODS: Fecal metabolomics was employed to draw the metabolic profile based on UHPLC-Q-TOF-MS/MS. The V3-V4 hypervariable regions of the bacteria 16S rRNA gene were amplified to explore the structural changes of the intestinal microbiome after TT intervention and to analyze the differential microbiota. The microbial metabolites SCFAs were determined by GC-MS, and the BAs and tryptophan metabolites were quantified by UPLC-TQ-MS. Spearman correlation analysis was carried out to comprehensively investigate the relationship among the endogenous metabolites profile, intestinal microbiota and their metabolites. RESULTS: TT exhibited remarkably therapeutic effect on T2DM rats, as evidenced by improved glucolipid metabolism and intestinal barrier integrity, ameliorated inflammation and remission in insulin resistance. A total of 24 endogenous biomarkers were screened through fecal metabolomics studies, which were mainly related to tryptophan metabolism, fatty acid metabolism, bile acid metabolism, steroid hormone biosynthesis and arachidonic acid metabolism. Investigations on microbiomics revealed that TT significantly modulated 18 differential bacterial genera and reversed the disordered gut microbial in diabetes rats. Moreover, TT notably altered the content of gut microbiota metabolites, both in serum and fecal samples. Significant correlation among microbial community, metabolites and T2DM-related indicators was revealed. CONCLUSIONS: The multiple components of TT regulate the metabolic homeostasis of the organism and the balance of intestinal microbiota and its metabolites, which might mediate the anti-diabetic capacity of TT.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Tribulus , Ratas , Animales , Diabetes Mellitus Tipo 2/metabolismo , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem , Triptófano , Metabolómica , Heces/química
4.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256226

RESUMEN

Cell membrane chromatography (CMC) has been widely recognized as a highly efficient technique for in vitro screening of active compounds. Nevertheless, conventional CMC approaches suffer from a restricted repertoire of cell membrane proteins, making them susceptible to oversaturation. Moreover, the binding mechanism between silica gel and proteins primarily relies on intermolecular hydrogen bonding, which is inherently unstable and somewhat hampers the advancement of CMC. Consequently, this investigation aimed to establish a novel CMC column that could augment protein loading, enhance detection throughput, and bolster binding affinity through the introduction of covalent bonding with proteins. This study utilizes polydopamine (PDA)-coated silica gel, which is formed through the self-polymerization of dopamine (DA), as the carrier for the CMC column filler. The objective is to construct the HK-2/SiO2-PDA/CMC model to screen potential therapeutic drugs for gout. To compare the quantity and characteristics of Human Kidney-2 (HK-2) cell membrane proteins immobilized on SiO2-PDA and silica gel, the proteins were immobilized on both surfaces. The results indicate that SiO2-PDA has a notably greater affinity for membrane proteins compared to silica gel, resulting in a significant improvement in detection efficiency. Furthermore, a screening method utilizing HK-2/SiO2-PDA/CMC was utilized to identify seven potential anti-gout compounds derived from Plantago asiatica L. (PAL). The effectiveness of these compounds was further validated using an in vitro cell model of uric acid (UA) reabsorption. In conclusion, this study successfully developed and implemented a novel CMC filler, which has practical implications in the field.


Asunto(s)
Gota , Indoles , Plantago , Polímeros , Humanos , Gel de Sílice , Dióxido de Silicio , Membrana Celular , Proteínas de la Membrana , Riñón , Cromatografía , Excipientes
5.
J Sep Sci ; 47(1): e2300751, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234032

RESUMEN

Gancao Xiexin Decoction (GCXXD) is a traditional Chinese decoction that is often used in treating gastric ulcers. However, the substance basis and mechanism of action remain unclear. In this study, in vivo and in vitro components of GCXXD were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry. The compound Discover platform was used to ultimately enable rapid identification of compounds. Acquire X intelligent data acquisition technology software was innovatively adopted. In the process of collecting drug-containing plasma, all components detected in blank plasma samples were excluded to eliminate the interference and influence of endogenous components in plasma, making the analysis results more accurate and reliable. At the same time, the possibility of selecting precursor parent ions with low concentration levels within the chromatographic peak can be increased, improving the coverage and integrality of the detection of components in vivo. Also, the targeted network pharmacology strategy combined with molecular docking was established to explore the mechanism of GCXXD in treating gastric ulcers. As a result, 113 components were identified, 41 of which could enter the bloodstream and exert therapeutic effects in vivo. The main effective components are glycyrrhizic acid, 6-gingerol, jatrorrhizine, wogonin, palmatine, and liquiritigenin, main targets in vivo were related to ALB, IL6, and VEGF, which play an important role in anti-inflammatory and promoting angiogenesis. In summary, this study adopted a comprehensive analysis strategy to reveal the pharmacodynamic material basis and mechanism of GCXXD against gastric ulcers, providing a scientific basis for its clinical application.


Asunto(s)
Medicamentos Herbarios Chinos , Glycyrrhiza , Úlcera Gástrica , Humanos , Cromatografía Líquida de Alta Presión/métodos , Simulación del Acoplamiento Molecular , Farmacología en Red , Úlcera Gástrica/tratamiento farmacológico , Espectrometría de Masas/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química
6.
Anal Bioanal Chem ; 415(25): 6345-6353, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37620605

RESUMEN

Metabolomics is a biochemical analysis tool for identifying metabolic phenotypes and used to reveal the pathogenic mechanisms of disease and to inform drug-targeted therapies. Carboxyl-containing metabolites (CCMs) account for an important proportion of the metabolome, but because of the diversity of physical and chemical properties of CCMs in biological samples, traditional liquid chromatography-mass spectrometry (LC-MS) targeted metabolome analysis methods cannot achieve simultaneous quantification of multiple types of CCMs. Therefore, we proposed for the first time a targeted metabolomics strategy using isoniazid derivatization combined with LC-MS/MS to simultaneously quantify 39 CCMs of 5 different types (short-chain fatty acids, amino acids, bile acids, phenylalanine and tryptophan metabolic pathway acids) with large polarity differences associated with Alzheimer's disease (AD) and significantly improve the detection coverage and sensitivity. The yields of isoniazid derivative CCMs were high and could guarantee the accuracy of CCM quantification. The LODs of CCMs increased significantly (1.25-2000-fold) after derivatization. The method showed good selectivity, intra-day and inter-day accuracies and precisions, and repeatability. There was no significant effect on the determination of CCMs in terms of matrix effect and recovery. CCMs showed good stability. And CCMs showed good stability under short-term storage and freeze-thaw cycles. At the same time, the regulatory effects of Schisandrae chinensis Fructus and Ginseng Radix et Rhizoma (SG) herb pair on CCM metabolic disorders in feces, urine, serum, and the brain of AD rats were elucidated from the perspective of targeted metabolomics. In combination with pharmacodynamic evaluation and gut microbiota analysis, the mechanism of SG herb pair on AD rats was comprehensively understood. In summary, this innovative isoniazid derivatization combined with a targeted metabolomics method has great potential for trace biological lineage analysis.

7.
Phytochem Anal ; 34(5): 540-547, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169718

RESUMEN

INTRODUCTION: Relieving toxicity and enhancing a calming effect after processing Polygalae Radix (PR) are widely known. Aromatic carboxylic acids (ACAs) may be crucial processed products. However, due to the limited detection methods for ACAs, the whole metabolic profiles via intestinal bacteria are still not very clear. OBJECTIVE: Designing a novel strategy for the detection of ACAs and tracking the whole metabolic profiles before and after processing PR. MATERIALS AND METHODS: The stable-isotope labelling derivatisation (SILD) method based on multidimensional ultra-high performance liquid chromatography coupled with a mass spectrometer (UHPLC-MS) technology and UNIFI-pathway mode was firstly designed to systematically study the metabolisms of all the drug-derived ingredients ranging from m/z 100 to 2000 in processing PR via intestinal bacteria. Firstly, the SILD with UHPLC coupled with a triple-quadrupole MS technology was designed to trace eight ACA metabolites of the processed PR with intestinal bacteria. Additionally, the UHPLC coupled with a quadrupole time-of-flight MS with UNIFI-pathway mode was adopted to monitor relatively big metabolites. RESULTS: The metabolism mechanism of ACAs (eight kinds) and the relatively big molecular metabolites (98 kinds) were deeply traced in PR, PR with refined honey (HP), and PR with licorice (LP) via the intestinal bacteria. Totally 106 intact metabolic profiles of drug-derived ingredients were presented. Importantly, the influence of LP on the metabolism of compounds after incubation of intestinal bacteria was greater than that of HP. CONCLUSION: This research provides a comprehensive and systematic guidance for further study on in vivo metabolisms of the processed PR.


Asunto(s)
Medicamentos Herbarios Chinos , Miel , Espectrometría de Masas , Metaboloma , Raíces de Plantas/química , Cromatografía Líquida de Alta Presión/métodos , Miel/análisis , Medicamentos Herbarios Chinos/química
8.
Anal Bioanal Chem ; 415(14): 2677-2692, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37058167

RESUMEN

α-Glucosidase inhibitors in natural products are one of the promising drugs for the treatment of type 2 diabetes. However, due to the complexity of the matrix, it is challenging to comprehensibly clarify the specific pharmacodynamic substances. In this study, a novel high-throughput inhibitor screening strategy was established based on covalent binding of α-glucosidase on chitosan-functionalized multi-walled carbon nanotubes coupled with high-resolution mass spectrometry. The synthesized MWCNTs@CS@GA@α-Glu was characterized by TEM, SEM, FTIR, Raman, and TG. Performance studies showed that the microreactor exhibited stronger thermostability and pH tolerance than that of the free one while maintaining its inherent catalytic activity. Feasibility study applying a model mixture of known α-glucosidase ligand and non-ligands indicated the selectivity and specificity of the system. By integrating ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-QTOF-MS) with ion mobility mass spectrometry (IMS), 15 ligands were obtained and tentatively identified from Tribulus terrestris L., including 8 steroidal saponins, 4 flavonoids, and 3 alkaloids. These inhibitors were further validated by in vivo experiments and molecular docking simulation.


Asunto(s)
Quitosano , Diabetes Mellitus Tipo 2 , Nanotubos de Carbono , Tribulus , alfa-Glucosidasas/metabolismo , Quitosano/química , Cromatografía Líquida de Alta Presión/métodos , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación del Acoplamiento Molecular , Nanotubos de Carbono/química , Extractos Vegetales/química , Tribulus/química , Tribulus/metabolismo
9.
Int J Biol Macromol ; 232: 123488, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36731694

RESUMEN

Schisandra chinensis (S. chinensis) is an herbal medicine used for the treatment of Alzheimer's disease (AD). The purified polysaccharide fraction, namely SCP2, was previously isolated from S. chinensis crude polysaccharide (SCP) and its structure and in vitro activity were investigated. However, the in vivo activity of SCP2 and its potential mechanism for the treatment of AD have yet to be determined. This study used a combination of microbiomics and metabolomics to comprehensively explore the microbiota and metabolic changes in AD rats under SCP2 intervention, with the aim of elucidating the potential mechanisms of SCP2 in the treatment of AD. SCP2 showed significant therapeutic effects in AD rats, as evidenced by improved learning and memory capacity, reduced neuroinflammation, and restoration of the integrity of the intestinal barrier. Fecal metabolomic and microbiomic analyses revealed that SCP2 significantly modulated 19 endogenous metabolites and reversed gut microbiota disorders in AD rats. Moreover, SCP2 significantly increased the content of short-chain fatty acid (SCFAs) in the AD rats. Correlation analysis showed a significant correlation between gut microbes, metabolites and the content of SCFAs. Collectively, these findings will provide the basis for further development of SCP2.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Schisandra , Ratas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Schisandra/química , Metabolómica , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Heces/química
10.
Food Funct ; 14(2): 734-745, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562313

RESUMEN

As a well-known traditional Chinese medicine and functional food, Schisandra chinensis (S. chinensis) has been proved to possess excellent neuroprotective effects, and particularly the role of the polysaccharide fraction in neuroprotection has been increasingly emphasized. The aim of this study was to investigate the therapeutic effects and potential mechanism of action of the homogeneous polysaccharide SCP2, isolated and purified from S. chinensis polysaccharide (SCP), on Alzheimer's disease (AD) rats based on a holistic metabolomics approach in serum and urine. The results of the pharmacodynamics study showed that SCP2 significantly improved Aß25-35-induced cognitive dysfunction, improved oxidative damage and reduced Aß deposition in the hippocampus. The holistic metabolomics results of serum and urine showed that the intervention with SCP2 significantly reversed the metabolic profile disorder in AD rats. A total of 40 metabolites (21 serum metabolites and 19 urine metabolites) were identified, which were mainly involved in linoleic acid metabolism, alpha-linolenic acid metabolism and arachidonic acid metabolism. The results obtained in this study will provide new insights into the mechanisms of SCP2 in the treatment of AD and provide a basis for the subsequent structure-activity studies of SCP2.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Schisandra , Animales , Ratas , Enfermedad de Alzheimer/tratamiento farmacológico , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/uso terapéutico , Metabolómica , Polisacáridos/farmacología , Ratas Sprague-Dawley , Espectrometría de Masas
11.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430215

RESUMEN

Metastasis is one of the main obstacles for the treatment and prognosis of breast cancer. In this study, the effects and possible mechanisms of aloe emodin (AE) and emodin (EMD) for inhibiting breast cancer metastasis were investigated via cell metabolomics. First, a co-culture model of MCF-7 and HUVEC cells was established and compared with a traditional single culture of MCF-7 cells. The results showed that HUVEC cells could promote the development of cancer cells to a malignant phenotype. Moreover, AE and EMD could inhibit adhesion, invasion, and angiogenesis and induce anoikis of MCF-7 cells in co-culture model. Then, the potential mechanisms behind AE and EMD inhibition of MCF-7 cell metastasis were explored using a metabolomics method based on UPLC-Q-TOF/MS multivariate statistical analysis. Consequently, 27 and 13 biomarkers were identified in AE and EMD groups, respectively, including polyamine metabolism, methionine cycle, TCA cycle, glutathione metabolism, purine metabolism, and aspartate synthesis. The typical metabolites were quantitatively analyzed, and the results showed that the inhibitory effect of AE was significantly better than EMD. All results confirmed that AE and EMD could inhibit metastasis of breast cancer cells through different pathways. Our study provides an overall view of the underlying mechanisms of AE and EMD against breast cancer metastasis.


Asunto(s)
Emodina , Neoplasias Primarias Secundarias , Humanos , Emodina/farmacología , Antraquinonas/farmacología , Metabolómica , Melanoma Cutáneo Maligno
12.
Molecules ; 27(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36364128

RESUMEN

The deficiency or wrong combination of metal ions in Cu, Zn-superoxide dismutase (SOD1), is regarded as one of the main factors causing the aggregation of SOD1 and then inducing amyotrophic lateral sclerosis (ALS). A ligands-targets screening process based on native electrospray ionization ion mobility mass spectrometry (ESI-IMS-MS) was established in this study. Four glycosides including daidzin, sophoricoside, glycitin, and genistin were screened out from seven soybean isoflavone compounds and were found to interact with zinc-deficient or metal-free SOD1. The structure and conformation stability of metal-free and zinc-deficient SOD1 and their complexes with the four glycosides was investigated by collision-induced dissociation (CID) and collision-induced unfolding (CIU). The four glycosides could strongly bind to the metal-free and copper recombined SOD1 and enhance the folding stability of these proteins. Additionally, the ThT fluorescence assay showed that these glycosides could inhibit the toxic aggregation of the zinc-deficient or metal-free SOD1. The competitive interaction experiments together with molecular docking indicate that glycitin, which showed the best stabilizing effects, binds with SOD1 between ß-sheet 6 and loop IV. In short, this study provides good insight into the relationship between inhibitors and different SOD1s.


Asunto(s)
Esclerosis Amiotrófica Lateral , Isoflavonas , Zinc/química , Superóxido Dismutasa-1/metabolismo , Glycine max/metabolismo , Simulación del Acoplamiento Molecular , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Cobre/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Isoflavonas/farmacología , Glicósidos , Mutación
13.
J Pharm Biomed Anal ; 220: 115007, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36067594

RESUMEN

Traditional Chinese medicine (TCM) plays a synergistic and comprehensive pharmacodynamic role of multi-channel and multi-target through its multi-components, showing unique therapeutic advantages in chronic and multi-gene complex diseases. Herb pair is a unique combination of two relatively fixed herbs, which embodies the integrity of TCM theory. In this study, untargeted fecal metabolomics based on MS was used to investigate the action mechanism of Radix ginseng and Schisandra chinensis (GS) herb pair on the complex disease of Alzheimer's disease (AD), and further analyze the therapeutic effects of small molecular components and saccharides of GS on AD. Quantitative analysis of bile acids (BAs) and short-chain fatty acids (SCFAs) further verified the conclusion of untargeted metabolomics. The results of the pharmacodynamics evaluation showed that the AD model was successfully constructed, and each TCM group had a different degree of improvement compared with the AD group. PCA analysis based on untargeted fecal metabolomics showed that the metabolic disorders in AD rats changed significantly over time, and there were different degrees of callback in each TCM group. The result indicated that the GS herb pair can regulate metabolic disorders of AD. Further analysis of therapeutic biomarkers showed that GS mainly regulated the metabolism of bile acid biosynthesis, sphingolipid metabolism, porphyrin and chlorophyll metabolism, etc. to treat AD. This study will help to further understand the pathogenesis of AD from metabolomics, and provide beneficial support for the further study of GS and the clinical treatment of complex diseases with TCM.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Panax , Porfirinas , Schisandra , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Ácidos y Sales Biliares , Biomarcadores/metabolismo , Clorofila , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Metabolómica , Panax/metabolismo , Ratas , Schisandra/metabolismo , Esfingolípidos/uso terapéutico
14.
J Nat Prod ; 85(10): 2424-2432, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36122348

RESUMEN

Because of the abnormal upregulation of matrix metalloproteinase (MMP) activities in tumors, MMP inhibitors (MMPIs) are validated anticancer drug candidates. We identified several MMPIs including mangiferin as an MMP-9 inhibitor with a half maximal inhibitory concentration (IC50) value of 250 nM, isosilybin as an MMP-13 inhibitor with an IC50 value of 250 nM, and isoliquiritigenin as a broad-spectrum MMPI (with IC50 values of 16 nM for MMP-1, 10 nM for MMP-2, 81 nM for MMP-3, 8 nM for MMP-7, 10 nM for MMP-9, and 14 nM for MMP-13) through studying the interactions of 6 MMPs secreted by U-2OS cells with 51 phenolic natural products on the peptide microarray platform. In addition, the inhibitory mechanisms of as-discovered MMPIs were evaluated by a molecular docking simulation. The antitumor efficiencies of MMPIs were demonstrated by both a cell scratch test and growth suppression of mouse-born OS tumors. The results of the cell scratch test suggested that isoliquiritigenin significantly inhibited the migration of U-2OS cells. In addition, administration of isoliquiritigenin significantly reduced the tumor size (by about 80%) and prolonged the survival time (by more than 70 days). This study suggests that the discovery of MMPIs from phenolic natural products is a meaningful way to screen anticancer agents.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias Óseas , Osteosarcoma , Animales , Ratones , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/química , Metaloproteinasa 9 de la Matriz , Metaloproteinasa 13 de la Matriz , Simulación del Acoplamiento Molecular , Osteosarcoma/tratamiento farmacológico , Metaloproteinasas de la Matriz/química , Antineoplásicos/farmacología , Neoplasias Óseas/patología , Péptidos
15.
Molecules ; 27(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807548

RESUMEN

Plantago asiatica L. (PAL) as a medicinal and edible plant is rich in chemical compounds, which makes the systematic and comprehensive characterization of its components challenging. In this study, an integrated strategy based on three-dimensional separation including AB-8 macroporous resin column chromatography, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF MS), and ultra-high performance liquid chromatography-mass spectrometry with ion-mobility spectrometry (UHPLC-IM-MS) was established and used to separate and identify the structures of compounds from PAL. The extracts of PAL were firstly separated into three parts by AB-8 macroporous resin and further separated and identified by UHPLC-Q-TOF MS and UHPLC-IM-MS, respectively. Additionally, UHPLC-IM-MS was used to identify isomers and coeluting compounds, so that the product ions appearing at the same retention time (RT)can clearly distinguish where the parent ion belongs by their different drift times. UNIFI software was used for data processing and structure identification. A total of 86 compounds, including triterpenes, iridoids, phenylethanoid glycosides, guanidine derivatives, organic acids, and fatty acids, were identified by using MS information and fragment ion information provided by UHPLC-Q-TOF MS and UHPLC-IM-MS. In particular, a pair of isoforms of plantagoside from PAL were detected and identified by UHPLC-IM-MS combined with the theoretical calculation method for the first time. In conclusion, the AB-8 macroporous resin column chromatography can separate the main compounds of PAL and enrich the trace compounds. Combining UHPLC-IM-MS and UHPLC-Q-TOF MS can obtain not only more fragments but also their unique drift times and RT, which is more conducive to the identification of complex systems, especially isomers. This proposed strategy can provide an effective method to separate and identify chemical components, and distinguish isomers in the complex system of traditional Chinese medicine (TCM).


Asunto(s)
Medicamentos Herbarios Chinos , Plantago , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Medicamentos Herbarios Chinos/química , Espectrometría de Movilidad Iónica , Espectrometría de Masas/métodos
16.
Phytother Res ; 36(12): 4573-4586, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35906729

RESUMEN

Qishen granules (QSG), a Chinese herbal formula, has been widely used in the treatment of myocardial ischemic chronic heart failure (CHF) for many years, but its mechanism of action is still unclear. In this study, comprehensive metabolomics was used to investigate the underlying protective mechanisms of QSG in an isoproterenol-induced CHF rat model. A total of 14 biomarkers were identified in serum and 34 biomarkers in urine, which were mainly related to fatty acid metabolism, bile acid metabolism, amino acid metabolism, purine metabolism, vitamin metabolism, and inflammation. Finally, 22 markers were selected for quantitative analysis of serum, urine, and fecal samples to verify the reliability of the results of untargeted metabolomics, and the results were similar to those of untargeted metabolomics. The correlation analysis showed that the targeted quantitative endogenous metabolites and CHF-related indexes were closely related. QSG might alleviate myocardial inflammatory response, oxidative stress, and amino acid metabolism disorder in CHF by regulating the level of endogenous metabolites. This study revealed QSG could regulate potential biomarkers and correlated metabolic pathway, which provided support for the further application of QSG.


Asunto(s)
Insuficiencia Cardíaca , Metabolómica , Ratas , Animales , Isoproterenol/efectos adversos , Reproducibilidad de los Resultados , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/tratamiento farmacológico , Aminoácidos
17.
Arch Biochem Biophys ; 727: 109306, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35667444

RESUMEN

Structurally abnormal Cu, Zn-superoxide dismutase (SOD1) is considered one of the causes of amyotrophic lateral sclerosis. The misfolding and neurotoxic aggregation of SOD1 can be induced by mutations, metal deficiency, and post-translational modification. Here, we revealed the risk of oxidation damage on zinc-deficient SOD1 by native mass spectrometry coupled with ion mobility. The copper ions were found to be released in the early period of oxidation which may be the result of oxidation on its binding site. On the other hand, zinc-deficient SOD1 showed a faster and deeper dissociation tendency than SOD1 with no metal ions. The results of collision-induced unfolding indicated that the oxidized zinc-deficient SOD1 is more easily to be turned into totally unfolded conformation. ThT fluorescence also showed stronger aggregation of oxidized zinc-deficient SOD1. Compared with DTT-induced reduction, oxidized zinc-deficient SOD1 acted differently in dimer dissociation, conformation stability, and aggregation, suggesting that the conserved intramolecular disulfide bonds were influenced little during oxidation. Additionally, we explored glycitin, an isoflavone glycoside, to prevent the oxidation of metal-deficient SOD1 and inhibit the unfolding and aggregation of oxidized metal-deficient SOD1.


Asunto(s)
Esclerosis Amiotrófica Lateral , Isoflavonas , Desplegamiento Proteico , Cobre/química , Humanos , Isoflavonas/farmacología , Espectrometría de Masas , Metales , Mutación , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Zinc/química
18.
J Pharm Biomed Anal ; 217: 114839, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617784

RESUMEN

Analyzing the chemical components of traditional Chinese medicines containing multiple isomers is thorny. Here, an analytical strategy by using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry coupled ion mobility spectrometry was applied to characterize the main compounds from the fruits of Tribulus terrestris, which significantly boosted the separation efficiency and broadened the capacity of chromatographic column. A total of 155 chemicals including 120 steroidal saponins, 13 flavonoids, 20 alkaloids and 2 ferulic acids were identified or tentatively identified using the propounded method. An α-glucosidase inhibition test was conducted to compare whether the aptness of Tribulus terrestris differed from different origins. The results indicated that the activity of Tribulus terrestris from Inner Mongolia was better than that from Jilin and Hebei. Principal component analysis was next employed to seek out the potential chemical markers among these Tribulus terrestris from three origins. There were 13 substances exist significant differences in content of Tribulus terrestris from the three producing areas. These significant differences involve 11 steroidal saponins and 2 alkaloids. Among them, Inner Mongolia possessed the highest contention of all the 11 saponins. This suggested steroidal saponins may emerge huge potential of α-glucosidase inhibition activity. In conclusion, the present study furnished the identification of chemical components of medical herbs with various isomers as well as disclosed the latent diabetes treatment potential of steroidal saponins in Tribulus terrestris.


Asunto(s)
Saponinas , Tribulus , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Movilidad Iónica , Saponinas/análisis , Tribulus/química , alfa-Glucosidasas
19.
J Sep Sci ; 45(13): 2406-2414, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35490347

RESUMEN

Chrysanthemum is a kind of herb that can be used for both medicine and food. Although it has been shown to affect the redox damage of the lens, but the mechanism of action has not been systematically studied. This study identified the chemical profile of Fubai Chrysanthemum. Meanwhile, network pharmacology and the enrichment of the Kyoto Encyclopedia of Genes and Genomes pathway were combined to investigate the substance basis of Fubai Chrysanthemum for preventing cataract. The aqueous extracts of Fubaiju mainly contained 39 compounds. Compared with Gongju, Jinsiju, and wild chrysanthemum, Fubai Chrysanthemum showed a higher scavenging rate of 1,1-diphenyl-2-picrylhydrazyl free radicals and a higher content of total flavonoid. Fourteen chemical differences in four kinds of chrysanthemum were found based on principal component difference analysis. Pathway enrichment analysis showed that the main mechanisms of Fubai Chrysanthemum for preventing cataract were affecting the oxidative stress process and regulating cell growth and metabolism. Eventually, 11 key targets of Fubai Chrysanthemum for cataract prevention were identified. The strategy provided a better understanding of the chemical profile of Fubai Chrysanthemum and elucidated that its higher flavonoid content plays an important role in preventing cataract through antioxidant action and regulating cell growth.


Asunto(s)
Catarata , Chrysanthemum , Catarata/prevención & control , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Chrysanthemum/química , Flavonoides/farmacología , Espectrometría de Masas , Farmacología en Red
20.
Artículo en Inglés | MEDLINE | ID: mdl-35447521

RESUMEN

Wu-tou decoction (WTD) is a traditional Chinese medicine (TCM) formula which has been used for treating rheumatoid arthritis (RA) for a thousand years. However, the underlying mechanism of WTD in treating RA is still unclear. In recent years, more and more attention has been paid to the role of gut microbiota and microbiota-derived metabolites in the treatment of RA. Hence, this study aims to investigate the roles of microbiota and microbial metabolites in the treatment of RA with WTD. Firstly, the therapeutic effects of WTD on adjuvant-induced arthritis (AIA) rats were evaluated. Then, the 16S rRNA sequencing analysis was used to clarify the changes of the intestinal microbiota and obtain the key microbiota affected by WTD. The important microbial metabolites were quantitated to explore the metabolic characteristics of WTD against RA by targeted metabolomics method. Finally, correlation analysis was performed to investigate the functional correlation among the gut microbiota, metabolites and RA-related serum indexes. The results indicated that WTD could relieve arthritis and reverse gut microbiota dysbiosis. The variation of short-chain fatty acids, bile acids, tryptophan metabolites and amino acids, which are important microbial metabolites, were reversed by WTD intervention. The correlation studies proved that WTD could regulate inflammation and intestinal barrier function partially by modulating Bacteroides, Prevotella, Akkermansia and their associated acetic acid, butyric acid, cholic acid and indole propionic acid. The anti-RA effects of WTD were partially mediated by gut microbiota and microbial metabolites. This study provides a new insight for treating RA and highlights the importance of gut microbiota in the treatment of diseases.


Asunto(s)
Artritis Reumatoide , Medicamentos Herbarios Chinos , Animales , Artritis Reumatoide/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Genes de ARNr , Metabolómica , ARN Ribosómico 16S/genética , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...