Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37297239

RESUMEN

A Cu-2.35Ni-0.69Si alloy with low La content was designed in order to study the role of La addition on microstructure evolution and comprehensive properties. The results indicate that the La element demonstrates a superior ability to combine with Ni and Si elements, via the formation of La-rich primary phases. Owing to existing La-rich primary phases, restricted grain growth was observed, due to the pinning effect during solid solution treatment. It was found that the activation energy of the Ni2Si phase precipitation decreased with the addition of La. Interestingly, the aggregation and distribution of the Ni2Si phase, around the La-rich phase, was observed during the aging process, owing to the attraction of Ni and Si atoms by the La-rich phase during the solid solution. Moreover, the mechanical and conductivity properties of aged alloy sheets suggest that the addition of the La element showed a slight reducing effect on the hardness and electrical conductivity. The decrease in hardness was due to the weakened dispersion and strengthening effect of the Ni2Si phase, while the decrease in electrical conductivity was due to the enhanced scattering of electrons by grain boundaries, caused by grain refinement. More notably, excellent thermal stabilities, including better softening resistance ability and microstructural stability, were detected for the low-La-alloyed Cu-Ni-Si sheet, owing to the delayed recrystallization and restricted grain growth caused by the La-rich phases.

2.
Materials (Basel) ; 16(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36984027

RESUMEN

The thin-wall heat pipe is an efficient heat transfer component that has been widely used in the field of heat dissipation of high-power electronic equipment in recent years. In this study, the orange peel morphology defect of thin-wall heat pipes after bending deformation was analyzed both for the macro-3D profile and for the micro-formation mechanism. The morphology and crystal orientations of the grains and annealing twins were carefully characterized utilizing optical metallography and the electron backscatter diffraction technique. The results show that after high-temperature sintering treatment, the matrix grains of the heat pipe are seriously coarsened and form a strong Goss texture, while certain annealing twins with the unique copper orientation are retained. The distribution of the Schmid factor value subjected to the uniaxial stress indicates that inhomogeneity in the intergranular deformation exists among the annealing twins and matrix grains. The annealing twin exhibits a "hard-oriented" component during the deformation; thus, it plays a role as a barrier and hinders the slipping of dislocation. As the strain accumulates, part of the annealing twins may protrude from the surface of the heat pipe, forming a large-scale fluctuation of the surface as the so-called "orange peel" morphology. The 3D profile shows the bulged twins mostly perpendicular to the drawing direction, about 200-300 in width and 10-20 µm in height.

3.
Materials (Basel) ; 15(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36234161

RESUMEN

As one of the key safety components in motor vehicles, the steel wheel rim is commonly fabricated with the roll forming process. However, due to the varied cross-sections of the rim and the low formability of high-strength steel, it is difficult to produce thin-wall and defect-free wheel rims to realize the purpose of light weight. To solve these problems, a novel hydroforming process by combining internal and external pressures (HIEP) was proposed to produce thin-wall wheel rims in the current study. The designed initial tube with diameter between the maximum and minimum diameter of the wheel rim ensures dispersed deformation and effectively avoids local excessive thinning. During HIEP, a hydroforming process was performed with two successive stages: the external pressure and internal pressure stages. Theoretical analysis and finite element method (FEM) were jointly used to investigate the effect of process parameters on the wrinkling and thinning. With the optimized parameters for internal and external pressure, the wrinkling of wheel rims is prevented under compressive state during the external pressure forming stage. Additionally, HIEP was experimentally carried out with high-strength steel rims of 650 MPa ultimate tensile strength (UTS). Finally, wheel rims with weight reduction of 13% were produced successfully, which shows a uniform thickness distribution with a local maximum thinning ratio of 11.4%.

4.
Materials (Basel) ; 15(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36013722

RESUMEN

Titanium alloy sheets present inferior formability and severe springback in conventional forming processes at room temperature which greatly restrict their applications in complex-shaped components. In this paper, deformation characteristics and formability and springback behaviors of titanium alloy sheet at room temperature are systematically reviewed. Firstly, deformation characteristics of titanium alloys at room temperature are discussed, and formability improvement under high-rate forming and other methods are summarized, especially the impacting hydroforming developed by us. Then, the main advances in springback prediction and control are outlined, including the advanced constitutive models as well as the optimization of processing paths and parameters. More importantly, notable springback reduction is observed with high strain rate forming methods. Finally, potential investigation prospects for the precise forming of titanium alloy sheet in the future are suggested.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...