Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Exp Dermatol ; 33(1): e14944, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37772659

RESUMEN

Melanoma is a melanocyte-derived malignant cancer and is known for its early metastasis and high mortality rates. It is a highly cutaneous tumour disease that could be related to the abnormal immune microenvironment, and the identification of reliable diagnostic and prognostic markers is crucial for improving patient outcomes. In the search for biomarkers, various types of RNAs have been discovered and recognized as reliable prognostic markers. Among these, small nucleolar RNAs (snoRNAs) have emerged as a promising avenue for studying early diagnosis and prognostic markers in tumours due to their widespread presence in tissues, tumour specificity and stability. In our study, we analysed snoRNAs data from melanoma samples in the TCGA-SKCM cohort and developed a prognostic model comprising 12 snoRNAs (SNORD9, SNORA31, SNORD14E, SNORA14A, SNORA5A, SNORD83A, SNORA75, AL096855, AC007684, SNORD14A, SNORA65 and AC004839). This model exhibited unique prognostic accuracy and demonstrated a significant correlation with the immune infiltration tumour microenvironment. Additionally, analysis of the GSE213145 dataset, which explored the sensitivity and resistance of immune checkpoint inhibitors, further supported the potential of snoRNAs as prognostic markers for immunotherapy. Overall, our study contributes reliable prognostic and immune-related biomarkers for melanoma patients. These findings can offer valuable insights for the future discovery of novel melanoma treatment strategies and hold promise for improving clinical outcomes in melanoma patients.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , ARN Nucleolar Pequeño/genética , Pronóstico , Neoplasias Cutáneas/genética , Biomarcadores , Microambiente Tumoral
2.
Mol Cell Biochem ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37851176

RESUMEN

Cell death is a fundamental physiological process in all living organisms. Processes such as embryonic development, organ formation, tissue growth, organismal immunity, and drug response are accompanied by cell death. In recent years with the development of electron microscopy as well as biological techniques, especially the discovery of novel death modes such as ferroptosis, cuprotosis, alkaliptosis, oxeiptosis, and disulfidptosis, researchers have been promoted to have a deeper understanding of cell death modes. In this systematic review, we examined the current understanding of modes of cell death, including the recently discovered novel death modes. Our analysis highlights the common and unique pathways of these death modes, as well as their impact on surrounding cells and the organism as a whole. Our aim was to provide a comprehensive overview of the current state of research on cell death, with a focus on identifying gaps in our knowledge and opportunities for future investigation. We also presented a new insight for macroscopic intracellular survival patterns, namely that intracellular molecular homeostasis is central to the balance of different cell death modes, and this viewpoint can be well justified by the signaling crosstalk of different death modes. These concepts can facilitate the future research about cell death in clinical diagnosis, drug development, and therapeutic modalities.

3.
Materials (Basel) ; 16(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895718

RESUMEN

Effective thermal management and electromagnetic shielding have emerged as critical goals in contemporary electronic device development. However, effectively improving the thermal conductivity and electromagnetic shielding performance of polymer composites in multiple directions continues to pose significant challenges. In this work, inspired by the efficiency of interchange bridges in enabling vehicles to pass quickly in multiple directions, we employed a straightforward method to fabricate bidirectionally oriented carbon fiber (CF)/silicone rubber composites with an interchange-bridge-like structure. The high aspect ratio of CFs and their bidirectional orientation structure play a pivotal role in facilitating the formation of thermal and electrical pathways within the composites. Meanwhile, the bidirectionally oriented CF/silicone rubber composites showed a significant enhancement in tensile strength in both the vertical and horizontal directions, attributed to the cross-arrangement of CF arrays within the composites. At a filler content of 62.3 wt%, the bidirectionally oriented CF/silicone rubber composites had a high tensile strength of 6.18 MPa. The composites also exhibited an excellent thermal conductivity of 25.3 W/(m·K) and a remarkable electromagnetic interference shielding effectiveness of 61.6 dB. The bidirectionally oriented CF/silicone rubber composites show potential for addressing thermal management and electromagnetic shielding issues in electronic devices.

4.
Small ; 19(49): e2206688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606911

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer , accounting for approximately 85% of lung cancers. For more than 40 years, platinum (Pt)-based drugs are still one of the most widely used anticancer drugs even in the era of precision medicine and immunotherapy. However, the clinical limitations of Pt-based drugs, such as serious side effects and drug resistance, have not been well solved. This study constructs a new albumin-encapsulated Pt(IV) nanodrug (HSA@Pt(IV)) based on the Pt(IV) drug and nanodelivery system. The characterization of nanodrug and biological experiments demonstrate its excellent drug delivery and antitumor effects. The multi-omics analysis of the transcriptome and the ionome reveals that nanodrug can activate ferroptosis by affecting intracellular iron homeostasis in NSCLC. This study provides experimental evidence to suggest the potential of HSA@Pt(IV) as a nanodrug with clinical application.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Nanopartículas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Albúminas , Hierro/farmacología , Línea Celular Tumoral
5.
ACS Appl Mater Interfaces ; 15(30): 35832-35846, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37489656

RESUMEN

Biophysical and biochemical cues modulate mammalian cell behavior and phenotype simultaneously. Macrophages, indispensable cells in the innate immune system, respond to external threats such as bacterial infections and implanted devices, undergoing the classical M1 polarization to become a pro-inflammatory phenotype. In the study, lipopolysaccharide (LPS)-induced M1 polarization was examined using RAW264.7, THP-1, and primary human PBMCs on a family of artificial extracellular matrix (ECM), named colloidal self-assembled patterns (cSAPs). The results showed that cSAPs were biocompatible, which cannot induce M1 or M2 polarization. Interestingly, specific cSAPs (e.g., cSAP3) suppress the level of M1 polarization (i.e., reduced nitric oxide production, down-regulated gene expression of iNOS, IL-6, TNF-α, IL-1ß, and TLR4, and reduced proportion of CD11b+CD86+ cells). Transcriptome analysis showed that cell adhesion and cell-ECM interaction participated in the M1 polarization, and the mechano-sensitive genes such as PIEZO1 were down-regulated on the cSAP3. More interestingly, these genes were also down-regulated under LPS stimulation, indicating that cells became insensitive to the LPS. The abovementioned results indicate that the defined physicochemical cues can govern macrophage polarization. This study illustrates a potential surface design at biointerface, which is critical in tissue engineering and materiobiology. The outcome is also inspiring in ECM-mediated immune responses.


Asunto(s)
Señales (Psicología) , Lipopolisacáridos , Animales , Humanos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Fenotipo , Mamíferos/metabolismo , Canales Iónicos/genética
6.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446739

RESUMEN

In this work, a novel bio-based high-performance bisbenzoxazine resin was synthesized from daidzein, 2-thiophenemethylamine and paraformaldehyde. The chemical structure was confirmed using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FT-IR). The polymerization process was systematically studied using differential scanning calorimetry (DSC) and in situ FT-IR spectra. It can be polymerized through multiple polymerization behaviors under the synergistic reaction of thiophene rings with benzopyrone rather than a single polymerization mechanism of traditional benzoxazines, as reported. In addition, thermogravimetric analysis (TGA) and a microscale combustion calorimeter (MCC) were used to study the thermal stability and flame retardancy of the resulting polybenzoxazine. The thermosetting material showed a high carbon residue rate of 62.8% and a low heat release capacity (HRC) value of 33 J/gK without adding any flame retardants. Based on its outstanding capability of carbon formation, this newly obtained benzoxazine resin was carbonized and activated to obtain a porous carbon material doped with both sulfur and nitrogen. The CO2 absorption of the carbon material at 0 °C and 25 °C at 1 bar was 3.64 mmol/g and 3.26 mmol/g, respectively. The above excellent comprehensive properties prove its potential applications in many advanced fields.


Asunto(s)
Benzoxazinas , Carbono , Benzoxazinas/química , Espectroscopía Infrarroja por Transformada de Fourier , Polimerizacion
7.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298212

RESUMEN

Osteoblasts must acquire a considerable capacity for folding unfolded and misfolded proteins (MPs) to produce large amounts of extracellular matrix proteins and maintain bone homeostasis. MP accumulation contributes to cellular apoptosis and bone disorders. Photobiomodulation therapy has been used to treat bone diseases, but the effects of decreasing MPs with photobiomodulation remain unclear. In this study, we explored the efficacy of 625 nm light-emitting diode irradiation (LEDI) to reduce MPs in tunicamycin (TM) induced-MC3T3-E1 cells. Binding immunoglobulin protein (BiP), an adenosine triphosphate (ATP)-dependent chaperone, is used to evaluate the capacity of folding MPs. The results revealed that pretreatment with 625 nm LEDI (Pre-IR) induced reactive oxygen species (ROS) production, leading to the increased chaperone BiP through the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1s (XBP-1s) pathway, and then restoration of collagen type I (COL-I) and osteopontin (OPN) expression relieving cell apoptosis. Furthermore, the translocation of BiP into the endoplasmic reticulum (ER) lumen might be followed by a high level of ATP production. Taken together, these results suggest that Pre-IR could be beneficial to prevent MP accumulation through ROS and ATP in TM-induced MC3T3-E1cells.


Asunto(s)
Adenosina Trifosfato , Estrés del Retículo Endoplásmico , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Chaperón BiP del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Tunicamicina/farmacología
8.
J Funct Biomater ; 14(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37233348

RESUMEN

Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells and peripheral nerve regeneration. However, the effects of smaller-sized topographical cues, such as those in the submicron- and nano-scales, on Schwann cell behavior remain poorly understood. In this study, four different submicron-grooved polystyrene films (800/400, 800/100, 400/400, and 400/100) were fabricated to study the behavior, gene expression, and membrane potential of Schwann cells. The results showed that all submicron-grooved films could guide the cell alignment and cytoskeleton in a groove depth-dependent manner. Cell proliferation and cell cycle assays revealed that there was no significant difference between the submicron groove samples and the flat control. However, the submicron grooves can direct the migration of cells and upregulate the expression of critical genes in axon regeneration and myelination (e.g., MBP and Smad6). Finally, the membrane potential of the Schwann cells was significantly altered on the grooved sample. In conclusion, this study sheds light on the role of submicron-grooved patterns in regulating the behavior and function of Schwann cells, which provides unique insights for the development of implants for peripheral nerve regeneration.

9.
Front Bioeng Biotechnol ; 11: 1110765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911202

RESUMEN

Janus kinase/signal transduction and transcription activation (JAK/STAT) pathways were originally thought to be intracellular signaling pathways that mediate cytokine signals in mammals. Existing studies show that the JAK/STAT pathway regulates the downstream signaling of numerous membrane proteins such as such as G-protein-associated receptors, integrins and so on. Mounting evidence shows that the JAK/STAT pathways play an important role in human disease pathology and pharmacological mechanism. The JAK/STAT pathways are related to aspects of all aspects of the immune system function, such as fighting infection, maintaining immune tolerance, strengthening barrier function, and cancer prevention, which are all important factors involved in immune response. In addition, the JAK/STAT pathways play an important role in extracellular mechanistic signaling and might be an important mediator of mechanistic signals that influence disease progression, immune environment. Therefore, it is important to understand the mechanism of the JAK/STAT pathways, which provides ideas for us to design more drugs targeting diseases based on the JAK/STAT pathway. In this review, we discuss the role of the JAK/STAT pathway in mechanistic signaling, disease progression, immune environment, and therapeutic targets.

10.
Materials (Basel) ; 16(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36984273

RESUMEN

Water pollution caused by the leakage and discharge of pollutants, such as dyes and heavy metal ions, can cause serious damage to the environment and human health. Therefore, it is important to design and develop adsorbent materials that are efficient and multifunctional for the removal of these pollutants. In this work, poly(vinyl alcohol-co-ethylene) (EVOH)/polyaniline (PANI) composite nanofibrous aerogels (NFAs) were fabricated via solution oxidation and blending. The aerogels were characterized by a scanning electron microscope, Fourier transform infrared spectrometry, a contact angle measuring instrument and a universal testing machine. The influences of the introduction of PANI nanorods on the structural properties of aerogels were investigated, and the adsorption performance of aerogels was also studied. The results showed that the introduction of PANI nanorods filled the fibrous network structure, reduced porosity, increased surface hydrophilicity and improved compressive strength. Furthermore, EVOH/PANI composite NFAs possess good adsorption performances for dyes and heavy metal ions: The adsorption capacities of methyl orange and chromium ions (VI) are 73.22 mg/g and 115.54 mg/g, respectively. Overall, the research suggests that EVOH/PANI NFAs have great potential as efficient and multifunctional adsorbent materials for the removal of pollutants from water.

11.
J Ethnopharmacol ; 306: 116161, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36646158

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Faeces Bombycis (silkworm excrement, called Cansha in Chinese), is the dried faeces of the larvae of silkworm. According to the theories of traditional Chinese medicine recorded in "Compendium of Materia Medica", Faeces Bombycis has often been prescribed in traditional Chinese medicine for the treatment of recurrent headache, rheumatalgia, rubella and itching et al. However, the bioactive components and their exact mechanisms underlying the pain-relieving effects remain to be revealed. AIM OF THE STUDY: The present study aimed to evaluate the analgesic effect of Faeces Bombycis extract (FBE) on migraine, explore the main active constituents and investigate the pharmacological mechanisms for its pain relief. MATERIALS AND METHODS: The bioactivity of different extracts from Faeces Bombycis was tracked by the nitroglycerin (NTG)-induced migraine model on rats and identified by NMR spectroscopic data. Whole-cell patch clamp technique, an electrophysiological method, was used to screen the potential targets and study the mechanism of action for the bioactive compound. The following targets have been screened and studied, including Nav1.7 sodium channels, Nav1.8 sodium channels, TRPV1 channels and TRPA1 channels. The trigeminal ganglion neurons were further used to study the effects of the identified compound on neuronal excitability. RESULTS: By testing the bioactivity of the different extracts proceedingly, fraction petroleum ether showed higher anti-migraine activity. Through further step-by-step isolations, 7 compounds were isolated. Among them, phytol was identified with the highest yield and displayed a potent anti-migraine effect. By screening the potential ion channel targets for migraine, phytol was found to preferentially block the inactivated state of Nav1.7 sodium channels with half-inhibition concentration 0.32 ± 0.05 µM. Thus, the effects of phytol on the biophysical properties of Nav1.7 sodium channels were further characterized. Phytol induced a hyperpolarizing shift of voltage-dependent inactivation and slowed the recovery from inactivation. The affinity of phytol became weaker in the inactivation-deficient Nav1.7 channels (Nav1.7-WCW). And such an effect was independent on the local anesthetic site (Nav1.7 F1737A). Consistent with the data from recombinant channels, the compound also displayed state-dependent inhibition on neuronal sodium channels and further decreased the neuronal excitability in trigeminal ganglion neurons. Moreover, besides Nav1.7 channel, phytol also antagonized the activation of TRPV1 and TRPA1 channels at micromolar concentrations with a weaker affinity. CONCLUSION: Our results demonstrated that phytol is the major anti-migraine ingredient of Faeces Bombycis and alleviates migraine behaviors by acting on Nav1.7 sodium channels in the trigeminal ganglion neurons. This study provided evidences for the therapeutic application of Faeces Bombycis and phytol on migraine disease.


Asunto(s)
Fitol , Bloqueadores de los Canales de Sodio , Ratas , Animales , Fitol/farmacología , Fitol/uso terapéutico , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Dolor/tratamiento farmacológico , Canales de Sodio/fisiología , Neuronas
12.
Int J Neurosci ; : 1-10, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36458531

RESUMEN

OBJECTIVES: This study aimed to produce an acellular spinal cord scaffold-bone marrow stromal cell (ASCS-BMSC) complex in which the growth of BMSCs transplanted into the spinal cord of rats could be simulated in vitro, facilitating the observation and evaluation of the growth of BMSCs on the ASCS for the first time. METHODS: Freeze-thaw, chemical extraction and mechanical shaking approaches were used to remove the cellular components and prepare a rat ASCS containing only the extracellular matrix (ECM) structure from the rat spinal cord. BMSCs were embedded into ASCSs and freeze-dried agarose scaffolds (FASs), and cell migration and proliferation were observed via fluorescence microscopy and the MTT assay. RESULTS: Compared with the normal rat spinal cord, the ASCS had no cell structure and retained ECM components such as type IV collagen, fibronectin and laminin, showing a three-dimensional network structure with good voids. The growth and proliferation of BMSCs on the ASCS was good, as shown by the MTT assay. Scanning electron microscopy showed that BMSCs covered 65% of the ASCS surface, and the mitochondria of BMSCs were developed and adhered to collagen fibres, as demonstrated by transmission electron microscopy. HE staining showed that BMSCs could grow inside the ASCS, and immunohistochemical staining showed that BMSCs still expressed CD44 and CD90 on the ASCS and had stem cell characteristics. CONCLUSIONS: The results of the experiment indicate that the ASCS has the ability to improve cell adhesion and proliferation. Thus, the ASCS-BMSC combination may be used to treat spinal cord injury.

13.
Materials (Basel) ; 15(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431560

RESUMEN

The development of polymer-based composites with a high thermal conductivity and electromagnetic interference (EMI) shielding performance is crucial to the application of polymer-based composites in electronic equipment. Herein, a novel strategy combining ice-templated assembly and stress-induced orientation was proposed to prepare polydimethylsiloxane (PDMS)/alumina/carbon fiber (CF) composites. CF in the composites exhibited a highly oriented structure in the horizontal direction. Alumina was connected to the CF, promoting the formation of thermal conductive pathways in both the horizontal and vertical directions. As the CF content was 27.5 vol% and the alumina content was 14.0 vol%, the PDMS/alumina/CF composite had high thermal conductivities in the horizontal and vertical directions, which were 8.44 and 2.34 W/(m·K), respectively. The thermal conductivity in the horizontal direction was 40.2 times higher than that of PDMS and 5.0 times higher than that of the composite with a randomly distributed filler. The significant enhancement of the thermal conductivity was attributed to the oriented structure of the CF and the bridging effect of alumina. The PDMS/alumina/CF composite exhibited an excellent EMI shielding effectiveness of 40.8 dB which was 2.4 times higher than that of the composite with a randomly distributed filler. The PDMS/alumina/CF composite also exhibited a low reflectivity of the electromagnetic waves. This work could provide a guide for the research of polymer-based composites with a high thermal conductivity and an EMI shielding performance.

14.
Foods ; 11(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35892784

RESUMEN

Periodontitis is a common inflammatory disease that is strongly influenced by dietary habits. Coffee is one of the most common dietary components; however, current research on the relationship between coffee consumption and periodontitis, as well as its underlying mechanisms, is limited. Based on a previous report, caffeine (CA) and chlorogenic acid (CGA) were formulated into artificial coffee (AC) for this experiment. Cell viability, prostaglandin E2 release, Western blotting, cellular reactive oxygen species (ROS) production, and NF-E2-related factor 2 (Nrf2) translocation analyses were performed to explore the effects of AC on lipopolysaccharide (LPS)-induced immortalized human oral keratinocytes (IHOKs) and elucidate their underlying mechanisms. AC pretreatment attenuated LPS-induced inflammatory mediator release, ROS production, and nuclear factor kappa B translocation in IHOKs. CA and CGA promoted AMP-activated protein kinase phosphorylation and down-regulated the nuclear factor-κB pathways to exert anti-inflammatory effects. Additionally, CGA promoted Nrf2 translocation and heme oxygenase-1 expression and showed anti-oxidative effects. Furthermore, AC, CA, and CGA components showed synergistic effects. Thus, we predict that coffee consumption may be beneficial for alleviating periodontitis. Moreover, the main coffee components CA and CGA seem to play a synergistic role in periodontitis.

15.
Scanning ; 2022: 7486005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711296

RESUMEN

Mitochondria are versatile organelles and function by communicating with cellular ecosystems. The fluorescent colocalization analysis after fixation is a highly intuitive method to understand the role of mitochondria. However, there are few fluorescent dyes available for mitochondrial staining after fixation. In this study, a novel fluorescent dye (BO-dye), extracted from Buddleja officinalis, was applied for mitochondrial staining in fixed immortalized human oral keratinocytes. The BO-dye (excitation: 414 nm, emission: 677 nm) is a small fluorescent molecular dye, which can cross the cytomembrane without permeabilization. We assume that the BO-dye could aggregate and bind to the mitochondria stably. BO-dye exhibited a mega-Stokes shift (>250 nm), which is an important feature that could reduce self-quenching and enhance the signal-to-noise ratio. Analysis of photophysical properties revealed that the BO-dye is temperature and pH insensitive, and it exhibits superior photostability. These results indicate that BO-dye can be considered an alternative fluorescent dye for labeling mitochondria after fixation.


Asunto(s)
Buddleja , Colorantes Fluorescentes , Buddleja/metabolismo , Ecosistema , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Mitocondrias , Coloración y Etiquetado
16.
Sci Adv ; 8(11): eabn3690, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294239

RESUMEN

The interaction between gas flow and liquid flow, governed by fluid dynamic principles, is of substantial importance in both fundamental science and practical applications. For instance, a precisely designed gas shearing on liquid solution may lead to efficacious production of advanced nanomaterials. Here, we devised a needleless Kármán vortex solution blow spinning system that uses a roll-to-roll nylon thread to deliver spinning solution, coupled with vertically blowing airflow to draw high-quality nanofibers with large throughput. A wide variety of nanofibers including polymers, carbon, ceramics, and composites with tunable diameters were fabricated at ultrahigh rates. The system can be further upgraded from single thread to multiple parallel threads and to the meshes, boosting the production of nanofibers to kilogram scale without compromising their quality.

17.
J Mol Histol ; 53(1): 75-83, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34676487

RESUMEN

Although endoplasmic reticulum (ER) stress is thought to be involved in various diseases such as cancer, metabolic, and inflammatory disorders, the relationship between ER stress and bone diseases, are remains unclear. Tunicamycin-treated MC3T3-E1 osteoblasts were used as the ER stress model in this study. 635 nm light-emitting diode irradiation (635 nm-IR) was carried out for 1 h before and after inducing ER stress. To investigate the effects of 635 nm-IR on ER stress-induced MC3T3-E1 osteoblasts and the underlying mechanism, western blot, reverse transcription polymerase chain reaction, alkaline phosphatase and Alizarin red staining, 2',7'-dichlorodyhydrofluorescein diacetate assay, Fluo-3AM and immunocytochemistry were performed. Pretreatment with 635 nm-IR effectively prevented intracellular reactive oxygen species production and alleviated ER stress through the pancreatic ER kinase (PERK)-eukaryotic initiation factor 2 (eIF2)-activating transcription factor 4 (ATF4)-nuclear factor-like 2 (Nrf2) signaling pathway. Hence, 635 nm-IR may serve a protective role in the treatment of ER stress-related bone diseases.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de la radiación , Láseres de Semiconductores , Osteoblastos/efectos de la radiación , Células 3T3 , Factor de Transcripción Activador 4/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Western Blotting , Supervivencia Celular , Células Cultivadas , Factor 2 Eucariótico de Iniciación/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Osteoblastos/metabolismo , Osteogénesis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
18.
Photodiagnosis Photodyn Ther ; 35: 102456, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34311092

RESUMEN

Recently, the incidence of vitiligo has increased because of stresses induced by external environment. Ultraviolet (UV) light therapy is the most commonly used method of treating the disease; however, UV light therapy requires a long treatment period, and prolonged exposure to UV radiation has side effects. The purpose of the present study was to investigate the effects of natural products and LED irradiation (LED-IR) on the synthesis of melanin. It was not possible to effectively increase intracellular melanin production through individual applications of Buddleja officinalis (BO), which is a natural substance selected through screening, or blue light irradiation (Blue-IR). However, when used in combination, these two agents stimulated adenylyl cyclase (AC) and melanin production was induced in the stimulated cells via the CREB/MITF/TYR pathway. Furthermore, the combined treatment with BO and Blue-IR generated low levels of cellular reactive oxygen species (ROS) and induced p38 phosphorylation, which in turn activated MITF in ROS-stimulated synthetic melanocytes, resulting in the promotion of melanogenic pathways other than the CREB/MITF/TYR pathway. In addition, this treatment combination effected melanin transport. These results suggested that the combined therapies can be used to treat melanin-deficiency skin diseases such as vitiligo.


Asunto(s)
Buddleja , Fotoquimioterapia , Melaninas , Melanocitos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes
19.
ACS Appl Mater Interfaces ; 12(30): 33447-33464, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32628010

RESUMEN

Blowspinning is a new technique that enables the large-scale production of fibers with diameters ranging from micrometer to nanometer, which is more like a combination of melt-blown and electrospinning but has its own characteristics. This method can be used to deposit fibers in situ and produce various fibrous materials, such as coating, nonwoven, and sponge. These characteristics provide a new strategy for nanofiber application and attract the interest of many researchers. Regarding the blowspinning technique, systematic research had been carried out, involving basic principles, empirical studies, spinning equipment, and application. This review is intended to emphasize trends and gaps in the form of a concise illustration of various research directions.

20.
Nat Commun ; 11(1): 3732, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709868

RESUMEN

Advanced ceramic sponge materials with temperature-invariant high compressibility are urgently needed as thermal insulators, energy absorbers, catalyst carriers, and high temperature air filters. However, the application of ceramic sponge materials is severely limited due to their complex preparation process. Here, we present a facile method for large-scale fabrication of highly compressible, temperature resistant SiO2-Al2O3 composite ceramic sponges by blow spinning and subsequent calcination. We successfully produce anisotropic lamellar ceramic sponges with numerous stacked microfiber layers and density as low as 10 mg cm-3. The anisotropic lamellar ceramic sponges exhibit high compression fatigue resistance, strain-independent zero Poisson's ratio, robust fire resistance, temperature-invariant compression resilience from -196 to 1000 °C, and excellent thermal insulation with a thermal conductivity as low as 0.034 W m-1 K-1. In addition, the lamellar structure also endows the ceramic sponges with excellent sound absorption properties, representing a promising alternative to existing thermal insulation and acoustic absorption materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA