Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anim Biosci ; 37(7): 1156-1167, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38665092

RESUMEN

OBJECTIVE: MicroRNAs (miRNAs) are endogenous non-coding RNAs that can play a role in the post-transcriptional regulation of mammalian preadipocyte differentiation. However, the precise functional mechanism of its regulation of fat metabolism is not fully understood. METHODS: We identified bta-miR-365-3p, which specifically targets the 3' untranslated region (3'UTR) of the FK506-binding protein 5 (FKBP5), and verified its mechanisms for regulating expression and involvement in adipogenesis. RESULTS: In this study, we found that the overexpression of bta-miR-365-3p significantly decreased the lipid accumulation and triglyceride content in the adipocytes. Compared to inhibiting bta-miR-36 5-3p group, overexpression of bta-miR-365-3p can inhibit the expression of adipocyte differentiation-related genes C/EBPα and PPARγ. The dualluciferase reporter system further validated the targeting relationship between bta-miR-365-3p and FKBP5. FKBP5 mRNA and protein expression were detected by quantitative real-time polymerase chain reaction and Western blot. Overexpression of bta-miR-365-3p significantly down-regulated FKBP5 expression, while inhibition of bta-miR-365-3p showed the opposite, indicating that bta-miR-365-3p negatively regulates FKBP5. Adenosine 5'-monophosphate (AMP)-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway is closely related to the regulation of cell growth and is involved in the development of bovine adipocytes. In this study, overexpression of bta-miR-365-3p significantly inhibited mRNA and protein expression of AMPK, mTOR, and SREBP1 genes, while the inhibition of bta-miR-365-3p expression was contrary to these results. Overexpression of FKBP5 significantly upregulated AMPK, mTOR, and SREBP1 gene expression, while inhibition of FKBP5 expression was contrary to the above experimental results. CONCLUSION: In conclusion, these results indicate that bta-miR-365-3p may be involved in the AMPK/mTOR signaling pathway in regulating Yanbian yellow cattle preadipocytes differentiation by targeting the FKBP5 gene.

2.
Anim Biotechnol ; 34(7): 2343-2352, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35732048

RESUMEN

MicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs of approximately 21 to 23 nucleotides in length. Owing to their regulation of gene expression and many physiological processes including fat metabolism, they have become a popular research topic in recent years; however, the exact functional mechanisms by which they regulate fat metabolism have not been fully elucidated. Here, we identified miR-15a, which specifically acquired the 3' untranslated region (UTR) containing 4-aminobutyrate aminotransferase (ABAT), and validated the regulation of its expression and involvement in adipogenesis mechanisms. We used a dual-luciferase reporter assay and transfection-mediated miR-15a overexpression and inhibition in Yanbian yellow cattle preadipocytes to investigate the role of miR-15a in adipogenesis. The results showed that miR-15a directly targets the 3'UTR of ABAT and downregulates its expression. Additionally, at the protein and mRNA levels, miR-15a overexpression using a miRNA mimic inhibited triglyceride accumulation and downregulated lipogenic peroxisome proliferator-activated receptor γ and CCAAT enhancer-binding protein α, whereas miR-15a inhibition had the opposite effect. The above results indicated that miR-15a regulated the differentiation of Yanbian yellow cattle preadipocytes by inhibiting the expression of ABAT. Furthermore, our findings suggested that miR-15a and its target gene(s) might represent new targets for investigating intramuscular fat deposits in cattle and treating human obesity.


Asunto(s)
4-Aminobutirato Transaminasa , MicroARNs , Humanos , Bovinos/genética , Animales , 4-Aminobutirato Transaminasa/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Transfección , Adipogénesis/genética
3.
Animals (Basel) ; 12(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35739812

RESUMEN

In this study, the effects of vitamin A and its metabolite, all-trans retinoic acid (ATRA), on the proliferation and differentiation of preadipocytes and the intestinal microbiome in Yanbian yellow cattle were investigated. Preadipocytes collected from Yanbian yellow cattle treated with different concentrations of ATRA remained in the G1/G0 phase, as determined by flow cytometry. Quantitative reverse-transcription polymerase chain reaction and western blotting analyses showed that the mRNA and protein expression levels of key adipogenic factors, peroxisome proliferator- activated receptor gamma (PPARγ), CCAAT enhancer-binding protein α (C/EBPα), and extracellular signal-regulated kinase 2 (ERK2), decreased. ATRA was found to regulate the mTOR signaling pathway, which is involved in lipid metabolism, by inhibiting the expression of AKT2 and the adipogenic transcription factors SREBP1, ACC, and FAS; the protein and mRNA expression levels showed consistent trends. In addition, 16S rRNA sequencing results showed that a low concentration of vitamin A promoted the growth of intestinal microflora beneficial to lipid metabolism and maintained intestinal health. The results indicated that ATRA inhibited the adipogenic differentiation of preadipocytes from Yanbian yellow cattle through the AKT/mTOR signaling pathway, and that low concentrations of vitamin A may help maintain the intestinal microbes involved in lipid metabolism in cattle.

4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 4685-4686, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26644227

RESUMEN

The complete chloroplast genome sequence of Schefflera octophylla, a critical Chinese medicine was reported here. The complete chloroplast genome of Schefflera octophylla is 156 685 bp in length with 37.93% overall GC content. A pair of IRs (inverted repeats) of 25 965 bp were separated by LSC (86 609 bp) and SSC (18 146 bp). The phylogenetic analysis of 17 taxa showed a strong sister relationship with Schefflera delavayi. Furthermore the Araliaceae was separated into two major groups.


Asunto(s)
Araliaceae/genética , Genoma del Cloroplasto , Genoma de Planta , Secuencias Invertidas Repetidas , Araliaceae/clasificación , Composición de Base , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...