Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 682356, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354681

RESUMEN

The precious rare edible fungus Morchella conica is popular worldwide for its rich nutrition, savory flavor, and varieties of bioactive components. Due to its high commercial, nutritional, and medicinal value, it has always been a hot spot. However, the molecular mechanism and endophytic bacterial communities in M. conica were poorly understood. In this study, we sequenced, assembled, and analyzed the genome of M. conica SH. Transcriptome analysis reveals significant differences between the mycelia and fruiting body. As shown in this study, 1,329 and 2,796 genes were specifically expressed in the mycelia and fruiting body, respectively. The Gene Ontology (GO) enrichment showed that RNA polymerase II transcription activity-related genes were enriched in the mycelium-specific gene cluster, and nucleotide binding-related genes were enriched in the fruiting body-specific gene cluster. Further analysis of differentially expressed genes in different development stages resulted in finding two groups with distinct expression patterns. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment displays that glycan degradation and ABC transporters were enriched in the group 1 with low expressed level in the mycelia, while taurine and hypotaurine metabolismand tyrosine metabolism-related genes were significantly enriched in the group 2 with high expressed level in mycelia. Moreover, a dynamic shift of bacterial communities in the developing fruiting body was detected by 16S rRNA sequencing, and co-expression analysis suggested that bacterial communities might play an important role in regulating gene expression. Taken together, our study provided a better understanding of the molecular biology of M. conica SH and direction for future research on artificial cultivation.

2.
Front Plant Sci ; 6: 361, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26052334

RESUMEN

Drought stress is a key environmental factor limiting the growth and productivity of plants. The purpose of this study was to investigate the physiological responses of Camptotheca acuminata (C. acuminata) to different drought stresses and compare the drought tolerance between the provenances Kunming (KM) and Nanchang (NC), which are naturally distributed in different rainfall zones with annual rainfalls of 1000-1100 mm and 1600-1700 mm, respectively. We determined relative water content (RWC), chlorophyll content [Chl(a+b)], net photosynthesis (Pn), gas exchange parameters, relative leakage conductivity (REC), malondialdehyde (MDA) content and superoxide dismutase (SOD) and peroxidase (POD) activities of C. acuminata seedlings under both moderate (50% of maximum field capacity) and severe drought stress (30% of maximum field capacity). As the degree of water stress increased, RWC, Chl(a+b) content, Pn, stomatal conductance (Gs), transpiration rate (Tr) and intercellular CO2 concentration (Ci) values decreased, but water use efficiency (WUE), REC, MDA content and SOD and POD activities increased in provenances KM and NC. Under moderate and severe drought stress, provenance KM had higher RWC, Chl(a+b), Pn, WUE, SOD, and POD and lower Gs, Tr, Ci, and REC in leaves than provenance NC. The results indicated that provenance KM may maintain stronger drought tolerance via improvements in water-retention capacity, antioxidant enzyme activity, and membrane integrity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...