Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Autophagy ; : 1-13, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999993

RESUMEN

LC3 lipidation plays an important role in the regulation of macroautophagy and LC3-associated microautophagy. The E1-like enzyme ATG7 is one of the core components that are directly involved in LC3 lipidation reaction. Here, we provide evidence showing that acetylation of ATG7 tightly controls its enzyme activity to regulate the induction of macroautophagy and LC3-associated microautophagy. Mechanistically, acetylation of ATG7 disrupts its interaction with the E2-like enzyme ATG3, leading to an inhibition of LC3 lipidation in vitro and in vivo. Functionally, in response to various different stimuli, cellular ATG7 undergoes deacetylation to induce macroautophagy and LC3-associated microautophagy, which are necessary for cells to eliminate cytoplasmic DNA and degrade lysosome membrane proteins, respectively. Taken together, these findings reveal that ATG7 acetylation acts as a critical rheostat in controlling LC3 lipidation and related cellular processes.Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy-related; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; CREBBP/CBP: CREB binding protein; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EP300/p300: E1A binding protein p300; IFNB1: interferon beta 1; ISD: interferon stimulatory DNA; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; NAM: nicotinamide; PE: phosphatidylethanolamine; PTM: post-translational modification; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SIRT: sirtuin; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TSA: trichostatin A; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2; WT: wild-type.

2.
Eur J Med Res ; 28(1): 158, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101305

RESUMEN

BACKGROUND: Metabolic biomarkers are reported to be associated with the risk of lung cancer (LC). However, the observed associations from epidemiological studies are either inconsistent or inconclusive. METHODS: The genetic summary data of high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), triglyceride (TG), fasting plasma glucose (FPG), and glycated hemoglobin (HbA1c) and those of the LC and its histological subtypes were retrieved from previous GWASs. We performed two-sample Mendelian randomization (MR) and multivariable MR analyses to examine the associations between genetically predicted metabolic biomarkers and LC in East Asians and Europeans. RESULTS: In East Asians, the inverse-variance weighted (IVW) method suggests that LDL (odds ratio [OR] = 0.799, 95% CI 0.712-0.897), TC (OR = 0.713, 95% CI 0.638-0.797), and TG (OR = 0.702, 95% CI 0.613-0.804) were significantly associated with LC after correction for multiple testing. For the remaining three biomarkers, we did not detect significant association with LC by any MR method. Multivariable MR (MVMR) analysis yielded an OR of 0.958 (95% CI 0.748-1.172) for HDL, 0.839 (95% CI 0.738-0.931) for LDL, 0.942 (95% CI 0.742-1.133) for TC, 1.161 (95% CI 1.070-1.252) for TG, 1.079 (95% CI 0.851-1.219) for FPG, and 1.101 (95% CI 0.922-1.191) for HbA1c. In Europeans, the univariate MR analyses did not detect significant association between exposures and outcomes. However, in MVMR analysis integrating circulating lipids and lifestyle risk factors (smoking, alcohol drinking, and body mass index), we found that TG was positively associated with LC in Europeans (OR = 1.660, 95% CI 1.060-2.260). Subgroup and sensitivity analysis yielded similar results to the main analyses. CONCLUSIONS: Our study provides genetic evidence that circulating levels of LDL was negatively associated with LC in East Asians, whereas TG was positively associated with LC in both populations.


Asunto(s)
Pueblos del Este de Asia , Neoplasias Pulmonares , Humanos , Hemoglobina Glucada , Pueblo Europeo , Factores de Riesgo , Triglicéridos/genética , Triglicéridos/metabolismo , LDL-Colesterol/metabolismo , Biomarcadores , Neoplasias Pulmonares/genética , Polimorfismo de Nucleótido Simple
3.
Sci Adv ; 9(11): eade8487, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36930706

RESUMEN

Toll/interleukin-1 receptor (TIR) domain proteins function in cell death and immunity. In plants and bacteria, TIR domains are often enzymes that produce isomers of cyclic adenosine 5'-diphosphate-ribose (cADPR) as putative immune signaling molecules. The identity and functional conservation of cADPR isomer signals is unclear. A previous report found that a plant TIR could cross-activate the prokaryotic Thoeris TIR-immune system, suggesting the conservation of plant and prokaryotic TIR-immune signals. Here, we generate autoactive Thoeris TIRs and test the converse hypothesis: Do prokaryotic Thoeris TIRs also cross-activate plant TIR immunity? Using in planta and in vitro assays, we find that Thoeris and plant TIRs generate overlapping sets of cADPR isomers and further clarify how plant and Thoeris TIRs activate the Thoeris system via producing 3'cADPR. This study demonstrates that the TIR signaling requirements for plant and prokaryotic immune systems are distinct and that TIRs across kingdoms generate a diversity of small-molecule products.


Asunto(s)
ADP-Ribosa Cíclica , NAD+ Nucleosidasa , NAD+ Nucleosidasa/metabolismo , Receptores de Interleucina-1 , Transducción de Señal , Bacterias/metabolismo , Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(11): e2220921120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893276

RESUMEN

TIR domains are NAD-degrading enzymes that function during immune signaling in prokaryotes, plants, and animals. In plants, most TIR domains are incorporated into intracellular immune receptors termed TNLs. In Arabidopsis, TIR-derived small molecules bind and activate EDS1 heterodimers, which in turn activate RNLs, a class of cation channel-forming immune receptors. RNL activation drives cytoplasmic Ca2+ influx, transcriptional reprogramming, pathogen resistance, and host cell death. We screened for mutants that suppress an RNL activation mimic allele and identified a TNL, SADR1. Despite being required for the function of an autoactivated RNL, SADR1 is not required for defense signaling triggered by other tested TNLs. SADR1 is required for defense signaling initiated by some transmembrane pattern recognition receptors and contributes to the unbridled spread of cell death in lesion simulating disease 1. Together with RNLs, SADR1 regulates defense gene expression at infection site borders, likely in a non-cell autonomous manner. RNL mutants that cannot sustain this pattern of gene expression are unable to prevent disease spread beyond localized infection sites, suggesting that this pattern corresponds to a pathogen containment mechanism. SADR1 potentiates RNL-driven immune signaling not only through the activation of EDS1 but also partially independently of EDS1. We studied EDS1-independent TIR function using nicotinamide, an NADase inhibitor. Nicotinamide decreased defense induction from transmembrane pattern recognition receptors and decreased calcium influx, pathogen growth restriction, and host cell death following intracellular immune receptor activation. We demonstrate that TIR domains can potentiate calcium influx and defense and are thus broadly required for Arabidopsis immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Calcio/metabolismo , Receptores Inmunológicos/metabolismo , Niacinamida/metabolismo , Inmunidad de la Planta/genética , Enfermedades de las Plantas/genética
5.
Nucleic Acids Res ; 51(3): 1488-1499, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36718812

RESUMEN

Advances in DNA sequencing technology and bioinformatics have revealed the enormous potential of microbes to produce structurally complex specialized metabolites with diverse uses in medicine and agriculture. However, these molecules typically require structural modification to optimize them for application, which can be difficult using synthetic chemistry. Bioengineering offers a complementary approach to structural modification but is often hampered by genetic intractability and requires a thorough understanding of biosynthetic gene function. Expression of specialized metabolite biosynthetic gene clusters (BGCs) in heterologous hosts can surmount these problems. However, current approaches to BGC cloning and manipulation are inefficient, lack fidelity, and can be prohibitively expensive. Here, we report a yeast-based platform that exploits transformation-associated recombination (TAR) for high efficiency capture and parallelized manipulation of BGCs. As a proof of concept, we clone, heterologously express and genetically analyze BGCs for the structurally related nonribosomal peptides eponemycin and TMC-86A, clarifying remaining ambiguities in the biosynthesis of these important proteasome inhibitors. Our results show that the eponemycin BGC also directs the production of TMC-86A and reveal contrasting mechanisms for initiating the assembly of these two metabolites. Moreover, our data shed light on the mechanisms for biosynthesis and incorporation of 4,5-dehydro-l-leucine (dhL), an unusual nonproteinogenic amino acid incorporated into both TMC-86A and eponemycin.


Asunto(s)
Inhibidores de Proteasoma , Saccharomyces cerevisiae , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/metabolismo , Secuencia de Bases , Saccharomyces cerevisiae/genética , Familia de Multigenes
6.
Science ; 377(6614): eadc8969, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36048923

RESUMEN

Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.


Asunto(s)
ADP-Ribosil Ciclasa , Proteínas Adaptadoras del Transporte Vesicular , Bacterias , Proteínas Bacterianas , ADP-Ribosa Cíclica , Inmunidad de la Planta , Receptores Toll-Like , ADP-Ribosil Ciclasa/química , ADP-Ribosil Ciclasa/genética , ADP-Ribosil Ciclasa/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Bacterias/inmunología , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADP-Ribosa Cíclica/biosíntesis , ADP-Ribosa Cíclica/química , Isomerismo , NAD/metabolismo , Dominios Proteicos , Receptores de Interleucina-1/química , Transducción de Señal , Receptores Toll-Like/química , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Triptófano/química , Triptófano/genética
7.
J Biol Inorg Chem ; 27(8): 695-704, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36153767

RESUMEN

Determination of the toxicity of compounds toward cancer cells is a frequent procedure in drug discovery. For metal complexes, which are often reactive prodrugs, care has to be taken to consider reactions with components of the cell culture medium that might change the speciation of the metal complex before it is taken up by the cells. Here, we consider possible reactions between the clinical platinum drugs cisplatin and oxaliplatin with penicillin G, an antibiotic added routinely to cell culture media to prevent bacterial contamination. Platinum has a high affinity for ligands with sulfur donors. Penicillin G is an unstable thioether that degrades in a range of pathways. Nuclear magnetic resonance (NMR) and UV-Vis absorption spectroscopic studies show that reactions with cisplatin can occur within minutes to hours at 310 K, but more slowly with oxaliplatin. The identities of the Pt- adducts were investigated by mass spectrometry. The marked effect on cytotoxicity of co-incubation of cisplatin with penicillin G was demonstrated for the HeLa human cervical cancer cell line. These studies highlight the possibility that reactions with penicillin G might influence the cytotoxic activity of metal complexes determined in culture media.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Cisplatino/farmacología , Cisplatino/química , Oxaliplatino/farmacología , Oxaliplatino/química , Platino (Metal)/química , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Antineoplásicos/química , Penicilina G/farmacología
8.
Antibiotics (Basel) ; 11(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36009926

RESUMEN

Actinomycetes, most notably the genus Streptomyces, have great importance due to their role in the discovery of new natural products, especially for finding antimicrobial secondary metabolites that are useful in the medicinal science and biotechnology industries. In the current study, a genome-based evaluation of Streptomyces sp. isolate BR123 was analyzed to determine its biosynthetic potential, based on its in vitro antimicrobial activity against a broad range of microbial pathogens, including gram-positive and gram-negative bacteria and fungi. A draft genome sequence of 8.15 Mb of Streptomyces sp. isolate BR123 was attained, containing a GC content of 72.63% and 8103 protein coding genes. Many antimicrobial, antiparasitic, and anticancerous compounds were detected by the presence of multiple biosynthetic gene clusters, which was predicted by in silico analysis. A novel metabolite with a molecular mass of 1271.7773 in positive ion mode was detected through a high-performance liquid chromatography linked with mass spectrometry (HPLC-MS) analysis. In addition, another compound, meridamycin, was also identified through a HPLC-MS analysis. The current study reveals the biosynthetic potential of Streptomyces sp. isolate BR123, with respect to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis. Moreover, the comparative genome study compared the isolate BR123 with other Streptomyces strains, which may expand the knowledge concerning the mechanism involved in novel antimicrobial metabolite synthesis.

9.
Cell Cycle ; 21(16): 1710-1725, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35503407

RESUMEN

This study explored the mechanism that ADAMTS9-AS2/miR-196b-5p/PPP1R12B/cell cycle pathway axis in inhibiting the malignant progression of esophageal cancer (EC), providing a new idea for targeted molecular therapy of EC. The expression data of EC tissue were acquired from TCGA database. The target lncRNA, downstream miRNA and its target gene were determined by bioinformatics analysis. ADAMTS9-AS2, miR-196b-5p and PPP1R12B levels in EC tissue and cells were assayed through qRT-PCR. Western blot was applied to assess protein level of PPP1R12B in cells and tissues, as well as protein expression of CDK1, cyclin A2, cyclin B1 and Plk1 in EC cells. Cell proliferation was assayed via CCK-8 assay. Cell cycle distribution was analyzed by flow cytometry. Cell migratory and invasive abilities were measured through scratch healing and transwell assays. Pearson correlation analysis was utilized to analyze relationship among ADAMTS9-AS2, miR-196b-5p and PPP1R12B. RIP was introduced to assess binding among the three. Dual-luciferase assay was utilized to verify targeted binding sites. The tumor formation in nude mice assay was utilized to detect tumorigenesis of EC cells in vivo. ADAMTS9-AS2 was significantly lowly expressed while miR-196b-5p was increased in EC tissue and cells. ADAMTS9-AS2 bound to miR-196b-5p and constrained its expression. Overexpressed ADAMTS9-AS2 inhibited EC cell malignant progression via downregulating miR-196b-5p, while overexpressed miR-196b-5p reversed this inhibitory effect. ADAMTS9-AS2 modulated PPP1R12B level by competitively inhibiting miR-196b-5p. PPP1R12B played a modulatory role in EC by inhibiting cell cycle pathway. Overexpressed ADAMTS9-AS2 regulated the tumor-forming ability of EC cells in vivo through miR-196b-5p/PPP1R12B/cell cycle signaling pathway axis. ADAMTS9-AS2 downregulated PPP1R12B by adsorbing miR-196b-5p, so as to regulate the cell cycle signaling pathway to inhibit EC malignant progression.


Asunto(s)
Proteína ADAMTS9/genética , Neoplasias Esofágicas , MicroARNs , Proteína Fosfatasa 1/metabolismo , ARN Largo no Codificante , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Esofágicas/genética , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética
10.
Dalton Trans ; 51(11): 4447-4457, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35226015

RESUMEN

We have synthesized a series of novel substituted sulfonyl ethylenediamine (en) RuII arene complexes 1-8 of [(η6-arene)Ru(R1-SO2-EnBz)X], where the arene is benzene, HO(CH2)2O-phenyl or biphenyl (biph), X = Cl or I, and R1 is phenyl, 4-Me-phenyl, 4-NO2-phenyl or dansyl. The 'piano-stool' structure of complex 3, [(η6-biph)Ru(4-Me-phenyl-SO2-EnBz)I], was confirmed by X-ray crystallography. The values of their aqua adducts were determined to be high (9.1 to 9.7). Complexes 1-8 have antiproliferative activity against human A2780 ovarian, and A549 lung cancer cells with IC50 values ranging from 4.1 to >50 µM, although, remarkably, complex 7 [(η6-biph)Ru(phenyl-SO2-EnBz)Cl] was inactive towards A2780 cells, but as potent as the clinical drug cisplatin towards A549 cells. All these complexes also showed catalytic activity in transfer hydrogenation (TH) of NAD+ to NADH with sodium formate as hydride donor, with TOFs in the range of 2.5-9.7 h-1. The complexes reacted rapidly with the thiols glutathione (GSH) and N-acetyl-L-cysteine (NAC), forming dinuclear bridged complexes [(η6-biph)2Ru2(GS)3]2- or [(η6-biph)2Ru2(NAC-H)3]2-, with the liberation of the diamine ligand which was detected by LC-MS. In addition, the switching on of fluorescence for complex 8 in aqueous solution confirmed release of the chelated DsEnBz ligand in reactions with these thiols. Reactions with GSH hampered the catalytic TH of NAD+ to NADH due to the decomposition of the complexes. Co-administration to cells of complex 2 [(η6-biph)Ru(4-Me-phenyl-SO2-EnBz)Cl] with L-buthionine sulfoximine (L-BSO), an inhibitor of GSH synthesis, partially restored the anticancer activity towards A2780 ovarian cancer cells. Complex 2 caused a concentration-dependent G1 phase cell cycle arrest, and induced a significant level of reactive oxygen species (ROS) in A2780 human ovarian cancer cells. The amount of induced ROS decreased with increase in GSH concentration, perhaps due to the formation of the dinuclear Ru-SG complex.


Asunto(s)
Antineoplásicos/farmacología , Cisteína/química , Compuestos Organometálicos/farmacología , Compuestos de Sulfhidrilo/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Catálisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Etilenodiaminas/química , Etilenodiaminas/farmacología , Humanos , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Rutenio/química , Rutenio/farmacología
11.
Autophagy ; 18(6): 1338-1349, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34612149

RESUMEN

Macroautophagy/autophagy, a highly conserved lysosome-dependent degradation pathway, has been intensively studied in regulating cell metabolism by degradation of intracellular components. In this study, we link autophagy to RNA metabolism by uncovering a regulatory role of autophagy in ribosomal RNA (rRNA) synthesis. Autophagy-deficient cells exhibit much higher 47S precursor rRNA level, which is caused by the accumulation of SQSTM1/p62 (sequestosome 1) but not other autophagy receptors. Mechanistically, SQSTM1 accumulation potentiates the activation of MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) signaling and promotes the assembly of RNA polymerase I pre-initiation complex at ribosomal DNA (rDNA) promoters, which leads to an increase of 47S rRNA transcribed from rDNA. Functionally, autophagy deficiency promotes protein synthesis, cell growth and cell proliferation, both of which are dependent on SQSTM1 accumulation. Taken together, our findings suggest that autophagy deficiency is involved in RNA metabolism by activating rDNA transcription and provide novel mechanisms for the reprogramming of cell metabolism in autophagy-related diseases including multiple types of cancers.Abbreviations: 5-FUrd: 5-fluorouridine; AMPK: AMP-activated protein kinase; ATG: autophagy related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; ChIP: chromatin immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PIC: pre-initiation complex; POLR1: RNA polymerase I; POLR1A/RPA194: RNA polymerase I subunit A; POLR2A: RNA polymerase II subunit A; rDNA: ribosomal DNA; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; rRNA: ribosomal RNA; RUBCN/Rubicon: rubicon autophagy regulator; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; SUnSET: surface sensing of translation; TAX1BP1: Tax1 binding protein 1; UBTF/UBF1: upstream binding transcription factor; WIPI2: WD repeat domain, phosphoinositide interacting 2; WT: wild-type.


Asunto(s)
Autofagia , ARN Polimerasa I , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/genética , Proteínas Portadoras/metabolismo , ADN Ribosómico/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , ARN , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Sirolimus
12.
Org Lett ; 23(19): 7439-7444, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494848

RESUMEN

The stambomycins are a family of bioactive macrolides isolated from Streptomyces ambofaciens. Aside from two stereocenters installed through cytochrome P450 oxidations, their stereochemistry has been predicted by sequence analysis of the polyketide synthase. We report a synthesis of the C1-C27 fragment of stambomycin D, the spectroscopic data of which correlates well with that of the natural product, further validating predictive sequence analysis as a powerful tool for stereochemical assignment of complex polyketide natural products.


Asunto(s)
Antibacterianos/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Macrólidos/química , Sintasas Poliquetidas/metabolismo , Policétidos/química , Antibacterianos/química , Productos Biológicos , Sistema Enzimático del Citocromo P-450/química , Macrólidos/síntesis química , Estructura Molecular , Sintasas Poliquetidas/química , Streptomyces/química
13.
Water Res ; 201: 117382, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34225233

RESUMEN

The continued emergence of bacterial pathogens presenting antimicrobial resistance is widely recognised as a global health threat and recent attention focused on potential environmental reservoirs of antibiotic resistance genes (ARGs). Freshwater environments such as rivers represent a potential hotspot for ARGs and antibiotic resistant bacteria as they are receiving systems for effluent discharges from wastewater treatment plants (WWTPs). Effluent also contains low levels of different antimicrobials including antibiotics and biocides. Sulfonamides are antibacterial chemicals widely used in clinical, veterinary and agricultural settings and are frequently detected in sewage sludge and manure in addition to riverine ecosystems. The impact of such exposure on ARG prevalence and diversity is unknown, so the aim of this study was to investigate the release of a sub-lethal concentration of the sulfonamide compound sulfamethoxazole (SMX) on the river bacterial microbiome using a flume system. This system was a semi-natural in vitro flume using river water (30 L) and sediment (6 kg) with circulation to mimic river flow. A combination of 'omics' approaches were conducted to study the impact of SMX exposure on the microbiomes within the flumes. Metagenomic analysis showed that the addition of low concentrations of SMX (<4 µg L-1) had a limited effect on the bacterial resistome in the water fraction only, with no impact observed in the sediment. Metaproteomics did not show differences in ARGs expression with SMX exposure in water. Overall, the river bacterial community was resilient to short term exposure to sub-lethal concentrations of SMX which mimics the exposure such communities experience downstream of WWTPs throughout the year.


Asunto(s)
Microbiota , Sulfametoxazol , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Genes Bacterianos , Ríos , Aguas Residuales
14.
Nature ; 590(7846): 463-467, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536618

RESUMEN

Actinobacteria produce numerous antibiotics and other specialized metabolites that have important applications in medicine and agriculture1. Diffusible hormones frequently control the production of such metabolites by binding TetR family transcriptional repressors (TFTRs), but the molecular basis for this remains unclear2. The production of methylenomycin antibiotics in Streptomyces coelicolor A3(2) is initiated by the binding of 2-alkyl-4-hydroxymethylfuran-3-carboxylic acid (AHFCA) hormones to the TFTR MmfR3. Here we report the X-ray crystal structure of an MmfR-AHFCA complex, establishing the structural basis for hormone recognition. We also elucidate the mechanism for DNA release upon hormone binding through the single-particle cryo-electron microscopy structure of an MmfR-operator complex. DNA binding and release assays with MmfR mutants and synthetic AHFCA analogues define the role of individual amino acid residues and hormone functional groups in ligand recognition and DNA release. These findings will facilitate the exploitation of actinobacterial hormones and their associated TFTRs in synthetic biology and in the discovery of new antibiotics.


Asunto(s)
Antibacterianos/biosíntesis , Furanos/metabolismo , Streptomyces coelicolor/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Furanos/química , Hormonas/química , Hormonas/clasificación , Hormonas/metabolismo , Ligandos , Modelos Moleculares , Péptidos/metabolismo , Proteínas Represoras/química , Proteínas Represoras/clasificación , Proteínas Represoras/metabolismo , Proteínas Represoras/ultraestructura , Transducción de Señal , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Relación Estructura-Actividad
15.
Microb Biotechnol ; 14(1): 291-306, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33280260

RESUMEN

Filamentous members of the phylum Actinobacteria are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacterium Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide but half of its putative BGCs are still orphan. Although previous studies have used marine heterotrophs to induce orphan BGCs in Salinispora, its co-culture with marine phototrophs has yet to be investigated. Following the observation of an antimicrobial activity against a range of phytoplankton by S. tropica, we here report that the photosynthate released by photosynthetic primary producers influences its biosynthetic capacities with production of cryptic molecules and the activation of orphan BGCs. Our work, using an approach combining metabolomics and proteomics, pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from marine actinobacteria.


Asunto(s)
Actinobacteria , Micromonosporaceae , Actinobacteria/genética , Micromonosporaceae/genética , Familia de Multigenes , Fitoplancton
17.
Sci Rep ; 10(1): 19566, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177633

RESUMEN

Secoiridoid glycosides are anti-feeding deterrents of the Oleaceae family recently highlighted as potential biomarkers in Danish ash trees to differentiate between those tolerant and susceptible to the fungal disease ash dieback. With the knowledge that emerald ash borer has recently entered Europe from Russia, and that extensive selection trials are ongoing in Europe for ash dieback tolerant European ash (Fraxinus excelsior), we undertook comprehensive screening of secoiridoid glycosides in leaf extracts of trees tolerant and susceptible to ash dieback sampled from sites in the UK and Denmark. Here we report an unexpected diversity of secoiridoid glycosides in UK trees and higher levels of secoiridoid glycosides in the UK sample group. While it is unlikely that secoiridoid glycosides generally can serve as reliable markers for ash dieback susceptibility, there are differences between tolerant and susceptible groups for specific secoiridoids. We predict that the high levels-and structural diversity-of secoiridoids present in the UK group may provide a robust reservoir of anti-feeding deterrents to mitigate future herbivore threats such as the Emerald ash borer.

18.
Chem Commun (Camb) ; 56(92): 14443-14446, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33146163

RESUMEN

Using a combination of a synthetic substrate analogue and product standard, MmfL, a homologue of the γ-butyrolactone biosynthetic enzyme AfsA, was shown to catalyse the condensation of dihydroxyacetone phosphate with a ß-ketoacyl thioester to form a phosphorylated butenolide intermediate in the biosynthesis of the methylenomycin furans, which induce methlenomycin antibiotic production in Streptomyces coelicolor A3(2). AfsA homologues are also involved in the biosynthesis of 2-akyl-4-hydroxy-3-methyl butenolide inducers of antibiotic production in other Streptomyces species, indicating that diverse signalling molecules are assembled from analogous phosphorylated butenolide intermediates.


Asunto(s)
4-Butirolactona/análogos & derivados , Antibacterianos/química , Proteínas Bacterianas/química , Furanos/química , 4-Butirolactona/química , Vías Biosintéticas , Catálisis , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Péptidos/química , Péptidos/metabolismo , Fosforilación , Streptomyces , Relación Estructura-Actividad
19.
Biosci Rep ; 40(11)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33146702

RESUMEN

The present study aims to investigate the relationship between miR-19b-3p and esophageal cancer (ESCA), and to detect the effects of miR-19b-3p transferred by exosomes on the phenotype of EC9706 cells. The expression of miR-19b-3p was detected by starBase analysis and real-time quantitative PCR (RT-qPCR). The target genes of miR-19b-3p were predicted by TargetScan and further verified by luciferase analysis. The mRNA and protein expression levels of PTEN and EMT-related genes were detected by RT-qPCR and Western blotting. The effects of miR-19b-3p transferred by exosomes and its target genes on the apoptosis, migration and invasion of EC9706 cells were studied by establishing a co-culture model of donor cells. The expression of miR-19b-3p in ESCA plasma, cells and exosomes was significantly up-regulated. miR-19b-3p transferred by exosomes could significantly reduce EC9706 cells apoptosis rate, promote cell migration and invasion, and could target the inhibition of PTEN expression. PTEN overexpression promoted apoptosis, inhibited cell migration and invasion, down-regulated the expression of MMP-2 and vimentin, and up-regulated E-cadherin expression; however, these effects could be partially reversed by miR-19b-3p. In summary, our results reveal that miR-19b-3p transferred by exosomes can target PTEN to regulate ESCA biological functions in the receptor EC9706 cells.


Asunto(s)
Apoptosis , Movimiento Celular , Neoplasias Esofágicas/terapia , Exosomas/genética , Terapia Genética , MicroARNs/genética , Fosfohidrolasa PTEN/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Neoplasias Esofágicas/enzimología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , MicroARNs/metabolismo , Invasividad Neoplásica , Fosfohidrolasa PTEN/genética , Transducción de Señal , Vimentina/genética , Vimentina/metabolismo
20.
Front Oncol ; 10: 872, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850301

RESUMEN

Objectives: To investigate the performance of radiomic-based quantitative analysis on CT images in predicting invasiveness of lung adenocarcinoma manifesting as pure ground-glass nodules (pGGNs). Methods: A total of 275 lung adenocarcinoma cases, with 322 pGGNs resected surgically and confirmed pathologically, from January 2015 to October 2017 were enrolled in this retrospective study. All nodules were split into training and test cohorts randomly with a ratio of 4:1 to establish models to predict between pGGN-like adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IVA). Radiomic feature extraction was performed using Pyradiomics with semi-automatically segmented tumor regions on CT scans that were contoured with an in-house plugin for 3D-Slicer. Random forest (RF) and support vector machine (SVM) were used for feature selection and predictive model building in the training cohort. Three different predictive models containing conventional, radiomic, and combined models were built on the basis of the selected clinical, radiological, and radiomic features. The predictive performance of each model was evaluated through the receiver operating characteristic curve (ROC) and the area under the curve (AUC). The predictive performance of two radiologists (A and B) and our radiomic predictive model were further investigated in the test cohort to see if radiomic predictive model could improve radiologists' performance in prediction between pGGN-like AIS/MIA and IVA. Results: Among 322 nodules, 48 (14.9%) were AIS and 102 (31.7%) were MIA with 172 (53.4%) for IVA. Age, diameter, density, and nine meaningful radiomic features were selected for model building in the training cohort. Three predictive models showed good performance in prediction between pGGN-like AIS/MIA and IVA (AUC > 0.8, P < 0.05) in both training and test cohorts. The AUC values in the test cohort were 0.824 (95% CI, 0.723-0.924), 0.833 (95% CI, 0.733-0.934), and 0.848 (95% CI, 0.750-0.946) for conventional, radiomic, and combined models, respectively. The predictive accuracy was 73.44 and 59.38% for radiologist A and radiologist B in the test cohort and was improved dramatically to 79.69 and 75.00% with the aid of our radiomic predictive model. Conclusion: The predictive models built in our study showed good predictive power with good accuracy and sensitivity, which provided a non-invasive, convenient, economic, and repeatable way for the prediction between IVA and AIS/MIA representing as pGGNs. The radiomic predictive model outperformed two radiologists in predicting pGGN-like AIS/MIA and IVA, and could significantly improve the predictive performance of the two radiologists, especially radiologist B with less experience in medical imaging diagnosis. The selected radiomic features in our research did not provide more useful information to improve the combined predictive model's performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA