Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1404678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086603

RESUMEN

Background: Aberrant activation of the classic renin-angiotensin system (RAS) and intestinal micro dysbiosis adversely affect insulin resistance (IR), dyslipidemia, and other metabolic syndrome markers. However, the action of angiotensin-converting enzyme 2 (ACE2) and gut health in systemic homeostasis vary, and their interaction is not completely understood. Methods: We adopted a combinatory approach of metabolomics and fecal 16S rRNA analysis to investigate gut microbiota and metabolite in two different mouse models, ACE2 knockout (ACE2 KO) mice and the ACE2-overexpressing obese mice. Results: 16S rRNA gene sequencing revealed that ACE2 influences microbial community composition and function, and ACE2 KO mice had increased Deferribacteres, Alcaligenaceae, Parasutterella, Catenibacterium, and Anaerotruncus, with decreased short-chain fatty acid (SCFA)-producing bacteria (Marvinbryantia and Alistipes). In contrast, ACE2-overexpressed mice exhibited increased anti-inflammatory probiotic (Oscillospiraceae, Marinifilaceae, and Bifidobacteriaceae) and SCFA-producing microbes (Rikenellaceae, Muribaculaceae, Ruminococcaceae, Odoribacter, and Alistipes) and decreased Firmicutes/Bacteroidetes, Lactobacillaceae, Erysipelotrichaceae, and Lachnospiraceae. Metabolome analysis indicated differential metabolites in ACE2 KO and ACE2-overexpression mice, especially the glucolipid metabolism-related compounds. Furthermore, correlation analysis between gut microbiota and metabolites showed a dynamic mutual influence affecting host health. Conclusion: Our study confirms for the first time a significant association between ACE2 status and gut microbiome and metabolome profiles, providing a novel mechanism for the positive effect of ACE2 on energy homeostasis.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Bacterias , Microbioma Gastrointestinal , Ratones Noqueados , ARN Ribosómico 16S , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Ratones , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Heces/microbiología , Metabolómica , Disbiosis/microbiología , Masculino , Metaboloma , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/genética , Obesidad/metabolismo , Obesidad/microbiología , Ratones Endogámicos C57BL , Probióticos , Ácidos Grasos Volátiles/metabolismo
2.
Nutr Metab (Lond) ; 19(1): 82, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527093

RESUMEN

BACKGROUND: White adipose tissue can be classified based on its location as subcutaneous and visceral fat, and the latter accumulation is reported to be more detrimental to metabolism. Endoplasmic reticulum (ER) stress has been demonstrated to regulate lipogenesis. The peptide angiotensin(1-7) [Ang(1-7)], which can be produced from angiotensin II (AngII) by angiotensin-converting enzyme 2 (ACE2), plays its role through Mas receptor, also participates in the regulation of lipid metabolism in adipose tissue, however, whether ER stress is involved in the mechanism remains unclear. Therefore, we aimed to explore the role of Ang(1-7) pathway in regulating visceral adipose tissue expansion and ER stress. METHODS: ACE2 knockout (KO), Mas KO and C57BL/6 J mice were fed with high fat diet. Db/db mice were treated with either normal saline, Ang(1-7) or Ang(1-7) combined with Mas receptor inhibitor A779 using mini osmotic pumps. Fat mass was weighted, fat distribution was evaluated by MRI, and lipid profile and adipokines in epididymal adipose tissue were measured by ELISA kits, and histology of epididymal adipose tissue was also analyzed in multiple animal models. Additionally, differentiated 3T3-L1 cells were pre-loaded with palmitic acid to induce ER stress, then treated with drugs as those administrated to db/db mice. ER stress and lipogenesis related proteins in mice adipose and differentiated 3T3L-1 cells were analyzed by Western blot. RESULTS: ACE2 or Mas KO mice exhibited increased visceral adipose tissue, adipocyte size and protein expression of lipogenesis and ER stress related markers in epididymal adipose tissue compared to wild-type mice. Db/db mice treated with Ang(1-7) displayed decreased visceral fat mass, adipocyte size and protein expression of lipogenesis and ER stress markers in epididymal adipose tissue compared to those treated with normal saline, while A779 partly attenuated these effects. Additionally, Ang(1-7) improved ER stress and lipogenesis markers in differentiated 3T3-L1 cells pre-loaded with palmitic acid. CONCLUSIONS: Our findings indicated that Ang(1-7) attenuated visceral adipose tissue expansion and lipogenesis by suppression of ER stress via Mas receptor. The present study provides a potential perspective for Ang(1-7) for the therapeutics of obesity and related disorders.

3.
Endocr Connect ; 11(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686715

RESUMEN

Aims: In this study, we determined the association between thyroid-stimulating hormone (TSH) and diabetic macular edema (DME) by assessing the prevalence and risk factors for DME in type 2 diabetes mellitus (T2DM) patients with different thyroid dysfunctions. Methods: This was a retrospective cross-sectional study including 1003 euthyroid and 92 subclinical hypothyroidism (SCH) T2DM patients. DME status was detected by optical coherence tomography (OCT). The association between TSH and DME and the impact of TSH on DME were analyzed. Results: The DME prevalence was 28.3% in the SCH patients and 14.0% in the euthyroid population. The serum FT4 (P = 0.001) and FT3 (P < 0.001) levels were significantly higher in the non-DME group than in the DME group, and the TSH level (P < 0.001) was significantly lower. Four subgroups (G1-G4) were divided by TSH level, and the chi-square test indicated that even in the normal range, the TSH level was positively related to DME prevalence (P = 0.001). Subgroup data indicated that the association between TSH and DME detected by OCT (P = 0.001) was stronger than the correlation between TSH and diabetic retinopathy detected by digital retinal photographs (P = 0.027). The logistic regression model confirmed that elevated TSH was an independent risk factor for DME. The odds ratio was 1.53 (P = 0.02). Conclusions: A high TSH level was an independent risk factor for DME. More attention should be given to the TSH level in T2DM patients due to its relationship with diabetic complications.

4.
Eur J Pharmacol ; 926: 175040, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35598846

RESUMEN

Extensive studies have shown that the increasing brown adipose tissue (BAT) mass/activity possesses a strong ability to prevent obesity and its related complications. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signal pathway is known to play a role in adipocyte differentiation and development. However, its impact on thermogenic properties of mature brown adipocytes has not yet been clarified. Nifuroxazide (NFX), a potent inhibitor of STAT3, has received widespread attention due to its alternative anti-tumor and anti-inflammatory effects. Herein, we report that NFX induces lipolysis with subsequent downregulation of ACCα and FAS, while ATGL and pHSL levels are elevated in mature brown adipocytes. Furthermore, NFX treatment promotes the mitochondrial respiration of mature brown adipocytes, as evidenced by increased expression of thermogenic transcriptional factors and mitochondrial content. In addition, it also alleviates the IL-6 and TNFα inhibition on brown thermogenic programming via suppressing the STAT3/NF-κB/IL-6 signaling pathway. In general, these findings suggest that the blockade of the JAK/STAT3 pathway by NFX has a pro-thermogenic effect on mature brown adipocytes which opens new perspectives for NFX repurposing and potential therapeutic route to counteract obesity and related metabolic disorders.


Asunto(s)
Adipocitos Marrones , Hidroxibenzoatos , Reguladores del Metabolismo de Lípidos , Mitocondrias , Nitrofuranos , Factor de Transcripción STAT3 , Proteína Desacopladora 1 , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Humanos , Hidroxibenzoatos/farmacología , Interleucina-6/metabolismo , Reguladores del Metabolismo de Lípidos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nitrofuranos/farmacología , Obesidad/metabolismo , Obesidad/prevención & control , Obesidad/terapia , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/biosíntesis , Proteína Desacopladora 1/metabolismo
6.
Elife ; 112022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35014608

RESUMEN

Identification of key regulators of energy homeostasis holds important therapeutic promise for metabolic disorders, such as obesity and diabetes. ACE2 cleaves angiotensin II (Ang II) to generate Ang-(1-7) which acts mainly through the Mas1 receptor. Here, we identify ACE2 pathway as a critical regulator in the maintenance of thermogenesis and energy expenditure. We found that ACE2 is highly expressed in brown adipose tissue (BAT) and that cold stimulation increases ACE2 and Ang-(1-7) levels in BAT and serum. Ace2 knockout mice (Ace2-/y) and Mas1 knockout mice (Mas1-/-) displayed impaired thermogenesis. Mice transplanted with brown adipose tissue from Mas1-/- display metabolic abnormalities consistent with those seen in the Ace2 and Mas1 knockout mice. In contrast, impaired thermogenesis of Leprdb/db obese diabetic mice and high-fat diet-induced obese mice were ameliorated by overexpression of Ace2 or continuous infusion of Ang-(1-7). Activation of ACE2 pathway was associated with improvement of metabolic parameters, including blood glucose, lipids, and energy expenditure in multiple animal models. Consistently, ACE2 pathway remarkably enhanced the browning of white adipose tissue. Mechanistically, we showed that ACE2 pathway activated Akt/FoxO1 and PKA pathway, leading to induction of UCP1 and activation of mitochondrial function. Our data propose that adaptive thermogenesis requires regulation of ACE2 pathway and highlight novel potential therapeutic targets for the treatment of metabolic disorders.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Metabolismo Energético/genética , Transducción de Señal , Termogénesis/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Eur J Pharmacol ; 899: 174042, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33745960

RESUMEN

Inflammation and oxidative stress are important factors that cause islet ß-cell dysfunction. STAT3 is not only a major factor in cell proliferation and differentiation, but also plays an important role in mediating inflammation. As a potent inhibitor of STAT3, the effect of Nifuroxazide (Nifu) on pancreatic islet cells in a high glucose environment has not been reported. In the present study, we used high concentration glucose-induced INS-1 cells to examine the effects of Nifu on high glucose-induced cell function by glucose-stimulated insulin secretion (GSIS). The effects of Nifu on high glucose-induced oxidative stress were recorded by oxidative factors and antioxidant factors. Simultaneously, the effect of Nifu on the inflammatory response, apoptosis, and STAT3/SOCS3 signal pathway were validated by quantitative real-time PCR (qRT-PCR) and Western blot. Our study indicated that Nifu significantly improved cell vitality and insulin secretion of INS-1 cells induced by high glucose. We found Nifu significantly inhibited pro-oxidative factors (ROS, MDA) and promoted anti-oxidative factors (SOD, GSH-PX, CAT). Meanwhile, qRT-PCR and Western blot results showed that inflammatory and apoptosis factors were remarkably inhibited by Nifu. Further research indicated that Nifu clearly suppressed the activation of the STAT3/SOCS3 signaling pathway. In conclusion, Nifu can significantly improve the insulin secretion function, protect oxidative stress injury, and reduce inflammatory response and apoptosis in high glucose-induced INS-1 cells. Therefore, Nifu has a new positive effect on maintaining the normal function of pancreatic islet cells in a high glucose environment and provides new drug candidates for the treatment and prevention of diabetes.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Glucosa/toxicidad , Hidroxibenzoatos/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Nitrofuranos/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Insulina/genética , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Vías Secretoras , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
8.
Clin Sci (Lond) ; 135(3): 535-554, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33533405

RESUMEN

The renin-angiotensin system (RAS) has currently attracted increasing attention due to its potential function in regulating energy homeostasis, other than the actions on cellular growth, blood pressure, fluid, and electrolyte balance. The existence of RAS is well established in metabolic organs, including pancreas, liver, skeletal muscle, and adipose tissue, where activation of angiotensin-converting enzyme (ACE) - angiotensin II pathway contributes to the impairment of insulin secretion, glucose transport, fat distribution, and adipokines production. However, the activation of angiotensin-converting enzyme 2 (ACE2) - angiotensin (1-7) pathway, a novel branch of the RAS, plays an opposite role in the ACE pathway, which could reverse these consequences by improving local microcirculation, inflammation, stress state, structure remolding, and insulin signaling pathway. In addition, new studies indicate the protective RAS arm possesses extraordinary ability to enhance brown adipose tissue (BAT) activity and induces browning of white adipose tissue, and consequently, it leads to increased energy expenditure in the form of heat instead of ATP synthesis. Interestingly, ACE2 is the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is threating public health worldwide. The main complications of SARS-CoV-2 infected death patients include many energy metabolism-related chronic diseases, such as diabetes. The specific mechanism leading to this phenomenon is largely unknown. Here, we summarize the latest pharmacological and genetic tools on regulating ACE/ACE2 balance and highlight the beneficial effects of the ACE2 pathway axis hyperactivity on glycolipid metabolism, as well as the thermogenic modulation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/enzimología , Enfermedades Metabólicas/enzimología , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Metabolismo Energético , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/virología , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2/fisiología
9.
FASEB J ; 34(12): 16291-16306, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33078906

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most general liver disease characterized by a continuum of liver abnormalities ranging from simple fatty liver to advanced stage of nonalcoholic steatohepatitis, cirrhosis, and even hepatocellular carcinoma. The pathological drivers of NAFLD are complex and largely undefined. It is increasingly identified that the imbalance between renin-angiotensin system and ACE2/Ang-(1-7)/Mas axis, as well as mitochondrial dysfunction associated with NAFLD. However, no known empirical research has focused on exploring the effect of the regulation of mitochondrial respiration chain activity by Ang-(1-7)/Mas on the prevention of NAFLD. Here, we evaluated the interaction and relevance of hepatic Ang-(1-7)/Mas-axis challenge with glucolipid metabolism and mitochondrial condition in vivo and in vitro. In this context, we found that Mas deletion in mice contributed to the severe glucose intolerance, insulin resistance, and hepatic steatosis which accompanied by elevated levels of serum/ hepatic alanine aminotransferase, aspartate aminotransferase, and triglycerides, as well as the mitochondrial dysfunction. Whereas forced upregulation of Mas or Ang-(1-7) administration could significantly attenuate these consequences by downregulating the expression of hepatic lipogenic proteins and enzymes for gluconeogenesis. Furthermore, activation of Ang-(1-7)/Mas arm could improve the IRS-1/Akt/AMPK pathway and enhance the mitochondrial energy utilization. Considered together, it is becoming extremely hopeful to provide a new perspective for Ang-(1-7)/Mas axis for the therapeutics of NAFLD.


Asunto(s)
Angiotensina I/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Glucolípidos/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo/fisiología , Células Hep G2 , Humanos , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proto-Oncogenes Mas , Transducción de Señal/fisiología
10.
Lipids Health Dis ; 18(1): 207, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775868

RESUMEN

OBJECTIVE: Endoplasmic reticulum (ER) stress and mitochondrial function affected intramuscular fat accumulation. However, there is no clear evident on the effect of the regulation of ER stress and mitochondrial function by Angiotensin-converting enzyme 2 (ACE2) on the prevention of intramuscular fat metabolism. We investigated the effects of ACE2 on ER stress and mitochondrial function in skeletal muscle lipid metabolism. METHODS: The triglyceride (TG) content in skeletal muscle of ACE2 knockout mice and Ad-ACE2-treated db/db mice were detected by assay kits. Meanwhile, the expression of lipogenic genes (ACCα, SREBP-1c, LXRα, CPT-1α, PGC-1α and PPARα), ER stress and mitochondrial function related genes (GRP78, eIF2α, ATF4, BCL-2, and SDH6) were analyzed by RT-PCR. Lipid metabolism, ER stress and mitochondrial function related genes were analyzed by RT-PCR in ACE2-overexpression C2C12 cell. Moreover, the IKKß/NFκB/IRS-1 pathway was determined using lysate sample from skeletal muscle of ACE2 knockout mice. RESULTS: ACE2 deficiency in vivo is associated with increased lipid accumulation in skeletal muscle. The ACE2 knockout mice displayed an elevated level of ER stress and mitochondrial dysfunctions in skeletal muscle. In contrast, activation of ACE2 can ameliorate ER stress and mitochondrial function, which slightly accompanied by reduced TG content and down-regulated the expression of skeletal muscle lipogenic proteins in the db/db mice. Additionally, ACE2 improved skeletal muscle lipid metabolism and ER stress genes in the C2C12 cells. Mechanistically, endogenous ACE2 improved lipid metabolism through the IKKß/NFκB/IRS-1 pathway in skeletal muscle. CONCLUSIONS: ACE2 was first reported to play a notable role on intramuscular fat regulation by improving endoplasmic reticulum and mitochondrial function. This study may provide a strategy for treating insulin resistance in skeletal muscle.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos/genética , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Peptidil-Dipeptidasa A/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Chaperón BiP del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Peptidil-Dipeptidasa A/deficiencia , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Triglicéridos/metabolismo
11.
Diabetes Metab Res Rev ; 35(4): e3123, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30604460

RESUMEN

BACKGROUND: Previous works indicated that the stress on the endoplasmic reticulum (ER) affected nonalcoholic fatty liver disease (NAFLD). However, there is no clear evident on the effect of the regulation of ER stress by angiotensin-converting enzyme 2 (ACE2) on the prevention of NAFLD. METHODS: HepG2 cells were treated with thapsigargin (Tg) or palmitic acid (PA). We analysed ACE2 expression using Western-blotting analyses. ER stress-related proteins were detected in ACE2 knockout mice and Ad-ACE2-treated db/db mice by immunofluorescence or Western-blotting analyses. In ACE2-overexpression HepG2 cells, the triglyceride (TG), total cholesterol (TC), and glycogen content were detected by assay kits. Meanwhile, the expression of hepatic lipogenic proteins (ACCα, SREBP-1c, FAS, and LXRα), enzymes for gluconeogenesis (PEPCK, G6Pase, and IRS2), and IKKß/NFκB/IRS1/Akt pathway were analysed by Western-blotting analyses. RESULTS: ACE2 was significantly increased in Tg/PA-induced cultured hepatocytes. Additionally, ACE2 knockout mice displayed elevated levels of ER stress, while Ad-ACE2-treated db/db mice showed reduced ER stress in liver. Furthermore, activation of ACE2 can ameliorate ER stress, accompanied by decreased TG content, increased intracellular glycogen, and downregulated expression of hepatic lipogenic proteins and enzymes for gluconeogenesis in Tg/PA-induced hepatocytes. As a consequence of anti-ER stress, the activation of ACE2 led to improved glucose and lipid metabolism through the IKKß/NFκB/IRS1/Akt pathway. CONCLUSIONS: This is the first time documented that ACE2 had a notable alleviating role in ER stress-induced hepatic steatosis and glucose metabolism via the IKKß/NFκB/IRS1/Akt-mediated pathway. This study may further provide insight into a novel underlying mechanism and a strategy for treating NAFLD.


Asunto(s)
Estrés del Retículo Endoplásmico , Gluconeogénesis , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Peptidil-Dipeptidasa A/fisiología , Transducción de Señal , Enzima Convertidora de Angiotensina 2 , Animales , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Triglicéridos/metabolismo
12.
Biochem Biophys Res Commun ; 508(2): 556-562, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30509498

RESUMEN

Regulatory Factor X-box binding transcriptional factor 6 (Rfx6) plays an important role in the differentiation and development of pancreas in mammals. However, the direct target genes of Rfx6 to regulate this process were largely unknown. The present study aimed to investigate the function of Rfx6 on regulating pancreatic differentiation and development in a physiologically-relevant context. We performed the chromatin immunoprecipitation followed by the next generation sequencing analysis (ChIP-seq) using whole pancreatic tissue harvested from C57/BL6 adult mice to find target genes of Rfx6. We captured 4146 unique peaks in the genome region of the adult murine pancreas. Among all these binding peaks, a majority were located in intron or intergenic regions. We further annotated all peaks to their nearest gene, and over 1000 genes were captured as Rfx6-binding genes in the pancreas. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis found that Rfx6-binding genes to be associated with the pancreas developmental process. A portion of selected ChIP-seq targets related with pancreas differentiation including Pdx1, Neurod1, Hnf1a, Nkx6-1, St18 and Shox2 were selected and validated as true targets by independent qPCR experiments. In addition, Rfx6 can directly bind to upstream of MiR-145, MiR-195, and possibly other non-protein-coding functional RNAs to control adult mouse pancreatic differentiation. Interestingly, our study revealed that Rfx6 played an important role in insulin translation by binding to the Eif2ak1, Upf1, and Eif5. Our data provide direct target genes of Rfx6 during pancreas development and point to Rfx6 as a potential therapeutic target for improving insulin protein content.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Insulina/biosíntesis , Páncreas/crecimiento & desarrollo , Factores de Transcripción del Factor Regulador X/genética , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Organogénesis , Páncreas/química , Unión Proteica , Factores de Transcripción del Factor Regulador X/metabolismo
13.
RSC Adv ; 9(67): 39394-39404, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-35540668

RESUMEN

Inflammation constitutes an important component of non-alcoholic fatty liver disease. STAT3 is a direct target of inflammatory cytokines, but also mediates glycolipid metabolism in the liver. As a potent inhibitor of STAT3, the effect of Nifuroxazide (Nifu) on glycolipid metabolism in liver has not been reported. In this study, we used palmitic acid (PA)-induced HepG2 cells to examine the expression of inflammatory factors and apoptosis-related proteins and the content of triglyceride (TG), total cholesterol (TC), and glycogen. The expression of hepatic lipogenic proteins (ACCα, SREBP-1c, FAS), gluconeogenesis enzymes (PEPCK, G6Pase, and IRS2), the IL-6/STAT3/SOCS3 inflammatory axis, and the insulin signaling pathway was determined. Our study shows that Nifu significantly improves lipid metabolism disorders in the PA-induced HepG2 cells, whereas, it remarkably reduced intracellular free fatty acid (FFA), TG, and TC content, suppressed lipid synthesis, and increased lipid decomposition. Our results also showed that Nifu significantly improved dysregulated glucose metabolism in the PA-treated HepG2 cells, increased glycogen content, and inhibited gluconeogenesis. Further research indicated that Nifu markedly inhibited activation of the IL-6/STAT3/SOCS3 signaling pathway. Finally, due to anti-inflammatory stress, Nifu enhanced insulin signaling in the PA-induced HepG2 cells. Therefore, Nifu can improve glucose and lipid metabolism in the PA-induced HepG2 cells, which provides new evidence that Nifu has a positive effect on PA-induced cellular hepatic steatosis and improves glucose metabolism in HepG2 cells, providing a new perspective for studying drug treatment of glucose and lipid metabolism disorders.

14.
Cryobiology ; 71(3): 499-506, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26506256

RESUMEN

The effects of cryopreservation and the vitrification solution on the embryo hatchability of the seven-band grouper Epinephelus septemfasciatus were evaluated in this study. Six small molecule cryoprotectants (PG, MeOH, Gly, DMF, DMSO and EG) and four macromolecular cryoprotectants (glucose, fructose, sucrose and trehalose) were used to determine the embryo toxicity levels. Results showed that the embryo survival rate was higher when the PM (24% PG + 16% MeOH):Gly ratios were 3:1 and 4:1. Further experiments showed that the embryo survival rates in PMG3S (35% PMG3 + 5% sucrose) and PMG3T (35% PMG3 + 5% trehalose) were relatively higher, which are 29.24 ± 10.81% and 27.01 ± 3.39%, respectively. When treated with PMG3S and PMG3T by using 5-step method, embryos at somite stage and tail-bud stage shrank in the first 6 min and gradually recovered in volume to the original. This indicated the successful permeation of the vitrification solutions into cells. Then, embryos at the embryoid body formation stage, the somite stage and the tail-bud stage were cryopreserved with PMG3S and PMG3T. In total, 82 floating embryos were obtained, 14 of which developed further, with 8 embryos at the tail-bud stage developing to the heartbeat stage, 4 embryos at the body formation stage development to the somite stage, and 2 embryos at the somite stage hatched to larval fish.


Asunto(s)
Criopreservación/métodos , Crioprotectores/farmacología , Embrión no Mamífero/efectos de los fármacos , Animales , Lubina , Sacarosa/farmacología , Tasa de Supervivencia , Trehalosa/farmacología , Vitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...