Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 194: 114897, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232525

RESUMEN

Cherry tomatoes (Solanum lycopersicum var. cerasiforme) are cultivated and consumed worldwide. While numerous cultivars have been bred to enhance fruit quality, few studies have comprehensively evaluated the fruit quality of cherry tomato cultivars. In this study, we assessed fruits of five cherry tomato cultivars (Qianxi, Fengjingling, Fushan88, Yanyu, and Qiyu) at the red ripe stage through detailed analysis of their physical traits, mineral compositions, antioxidant contents, and metabolite profiles. Significant variations were observed among the cultivars in terms of fruit size, shape, firmness, weight, glossiness, and sepal length, with each cultivar displaying unique attributes. Mineral analysis revealed distinct patterns of essential and trace element accumulation, with notable differences in calcium, sodium, manganese, and selenium concentrations. Fenjingling was identified as a selenium enriched cultivar. Analysis of antioxidant contents highlighted Yanyu as particularly rich in vitamin C and Fenjingling as having elevated antioxidant enzyme activities. Metabolomics analysis identified a total number of 3,396 annotated metabolites, and the five cultivars showed distinct metabolomics profiles. Amino acid analysis showed Fushan88 to possess a superior profile, while sweetness and tartness assessments indicated that Yanyu exhibited higher total soluble solids (TSS) and acidity. Notably, red cherry tomato cultivars (Fushan88, Yanyu, and Qiyu) accumulated significantly higher levels of eugenol and α-tomatine, compounds associated with undesirable flavors, compared to pink cultivars (Qianxi and Fengjingling). Taken together, our results provide novel insights into the physical traits, nutritional value, and flavor-associated metabolites of cherry tomatoes, offering knowledge that could be implemented for the breeding, cultivation, and marketing of cherry tomato cultivars.


Asunto(s)
Antioxidantes , Frutas , Minerales , Solanum lycopersicum , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Antioxidantes/metabolismo , Antioxidantes/análisis , Frutas/química , Frutas/metabolismo , Minerales/análisis , Minerales/metabolismo , Metabolómica , Valor Nutritivo , Metaboloma
2.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37298675

RESUMEN

Drought is among the most challenging environmental restrictions to tomatoes (Solanum lycopersi-cum), which causes dehydration of the tissues and results in massive loss of yield. Breeding for dehydration-tolerant tomatoes is a pressing issue as a result of global climate change that leads to increased duration and frequency of droughts. However, the key genes involved in dehydration response and tolerance in tomato are not widely known, and genes that can be targeted for dehydration-tolerant tomato breeding remains to be discovered. Here, we compared phenotypes and transcriptomic profiles of tomato leaves between control and dehydration conditions. We show that dehydration decreased the relative water content of tomato leaves after 2 h of dehydration treatment; however, it promoted the malondialdehyde (MDA) content and ion leakage ratio after 4 h and 12 h of dehydration, respectively. Moreover, dehydration stress triggered oxidative stress as we detected significant increases in H2O2 and O2- levels. Simultaneously, dehydration enhanced the activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and phenylalanine ammonia-lyase (PAL). Genome-wide RNA sequencing of tomato leaves treated with or without dehydration (control) identified 8116 and 5670 differentially expressed genes (DEGs) after 2 h and 4 h of dehydration, respectively. These DEGs included genes involved in translation, photosynthesis, stress response, and cytoplasmic translation. We then focused specifically on DEGs annotated as transcription factors (TFs). RNA-seq analysis identified 742 TFs as DEGs by comparing samples dehydrated for 2 h with 0 h control, while among all the DEGs detected after 4 h of dehydration, only 499 of them were TFs. Furthermore, we performed real-time quantitative PCR analyses and validated expression patterns of 31 differentially expressed TFs of NAC, AP2/ERF, MYB, bHLH, bZIP, WRKY, and HB families. In addition, the transcriptomic data revealed that expression levels of six drought-responsive marker genes were upregulated by de-hydration treatment. Collectively, our findings not only provide a solid foundation for further functional characterization of dehydration-responsive TFs in tomatoes but may also benefit the improvement of dehydration/drought tolerance in tomatoes in the future.


Asunto(s)
Solanum lycopersicum , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Solanum lycopersicum/genética , Deshidratación/genética , Deshidratación/metabolismo , Peróxido de Hidrógeno/metabolismo , Perfilación de la Expresión Génica , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías , Proteínas de Plantas/metabolismo
3.
J Exp Bot ; 70(4): 1325-1337, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30576511

RESUMEN

Strigolactones (SLs) are carotenoid-derived phytohormones that are known to influence various aspects of plant growth and development. As root-derived signals, SLs can enhance symbiosis between plants and arbuscular mycorrhizal fungi (AMF). However, little is known about the roles of SLs in plant defense against soil-borne pathogens. Here, we determined that infection with root-knot nematodes (RKNs; Meloidogyne incognita) induced SL biosynthesis in roots of tomato (Solanum lycopersicum). Silencing of SL biosynthesis genes compromised plant defense against RKNs, whilst application of the SL analog racGR24 enhanced it. Accumulation of endogenous jasmonic acid (JA) and abscisic acid (ABA) in the roots in response to RKN infection was enhanced by silencing of SL biosynthetic genes and was suppressed by application of racGR24. Genetic evidence showed that JA was a positive regulator of defense against RKNs while ABA was a negative regulator. In addition, racGR24 enhanced the defense against nematode in a JA-deficient mutant but not in an ABA-deficient mutant. Silencing of SL biosynthetic genes resulted in up-regulation of MYC2, which negatively regulated defense against RKNs. Our results demonstrate that SLs play a positive role in nematode defense in tomato and that MYC2 negatively regulates this defense, potentially by mediating hormone crosstalk among SLs, ABA and JA.


Asunto(s)
Lactonas/metabolismo , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas/biosíntesis , Inmunidad de la Planta/fisiología , Solanum lycopersicum/inmunología , Tylenchoidea/fisiología , Animales , Solanum lycopersicum/parasitología , Raíces de Plantas/metabolismo
4.
Plant Cell Environ ; 41(5): 1113-1125, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28370079

RESUMEN

Interplay of hormones with reactive oxygen species (ROS) fine-tunes the response of plants to stress; however, the crosstalk between brassinosteroids (BRs) and ROS in nematode resistance is unclear. In this study, we found that low BR biosynthesis or lack of BR receptor increased, whilst exogenous BR decreased the susceptibility of tomato plants to Meloidogyne incognita. Hormone quantification coupled with hormone mutant complementation experiments revealed that BR did not induce the defence response by triggering salicylic acid (SA), jasmonic acid/ethylene (JA/ET) or abscisic acid (ABA) signalling pathway. Notably, roots of BR-deficient plants had decreased apoplastic ROS accumulation, transcript of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and WHITEFLY INDUCED1 (WFI1), and reduced activation of mitogen-activated protein kinase 1/2 (MPK1/2) and MPK3. Silencing of RBOH1, WFI1, MPK1, MPK2 and MPK3 all increased the root susceptibility to nematode and attenuated BR-induced resistance against the nematode. Significantly, suppressed transcript of RBOH1 compromised BR-induced activation of MPK1/2 and MPK3. These results strongly suggest that RBOH-dependent MPK activation is involved in the BR-induced systemic resistance against the nematode.


Asunto(s)
Brasinoesteroides/metabolismo , Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiología , Tylenchoidea/fisiología , Ácido Abscísico/metabolismo , Animales , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal
5.
Plant Cell Environ ; 37(9): 2036-50, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24428600

RESUMEN

Brassinosteroids (BRs) are essential for plant growth and development; however, their roles in the regulation of stomatal opening or closure remain obscure. Here, the mechanism underlying BR-induced stomatal movements is studied. The effects of 24-epibrassinolide (EBR) on the stomatal apertures of tomato (Solanum lycopersicum) were measured by light microscopy using epidermal strips of wild type (WT), the abscisic acid (ABA)-deficient notabilis (not) mutant, and plants silenced for SlBRI1, SlRBOH1 and SlGSH1. EBR induced stomatal opening within an appropriate range of concentrations, whereas high concentrations of EBR induced stomatal closure. EBR-induced stomatal movements were closely related to dynamic changes in H(2)O(2) and redox status in guard cells. The stomata of SlRBOH1-silenced plants showed a significant loss of sensitivity to EBR. However, ABA deficiency abolished EBR-induced stomatal closure but did not affect EBR-induced stomatal opening. Silencing of SlGSH1, the critical gene involved in glutathione biosynthesis, disrupted glutathione redox homeostasis and abolished EBR-induced stomatal opening. The results suggest that transient H(2)O(2) production is essential for poising the cellular redox status of glutathione, which plays an important role in BR-induced stomatal opening. However, a prolonged increase in H(2)O(2) facilitated ABA signalling and stomatal closure.


Asunto(s)
Brasinoesteroides/farmacología , Peróxido de Hidrógeno/metabolismo , Estomas de Plantas/fisiología , Solanum lycopersicum/fisiología , Esteroides Heterocíclicos/farmacología , Ácido Abscísico/farmacología , Silenciador del Gen/efectos de los fármacos , Glutatión/farmacología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/enzimología , Modelos Biológicos , Movimiento/efectos de los fármacos , NADPH Oxidasas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/enzimología
6.
J Chem Ecol ; 39(2): 232-42, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23385367

RESUMEN

Negative plant-soil feedbacks play an important role in soil sickness, which is one of the factors limiting the sustainable development of intensive agriculture. Various factors, such as the buildup of pests in the soil, disorder in physico-chemical soil properties, autotoxicity, and other unknown factors may contribute to soil sickness. A range of autotoxins have been identified, and these exhibit their allelopathic potential by influencing cell division, water and ion uptake, dark respiration, ATP synthesis, redox homeostasis, gene expression, and defense responses. Meanwhile, there are great interspecific and intraspecific differences in the uptake and accumulation of autotoxins, which contribute to the specific differences in growth in response to different autotoxins. Importantly, the autotoxins also influence soil microbes and vice versa, leading to an increased or decreased degree of soil sickness. In many cases, autotoxins may enhance soilborne diseases by predisposing the roots to infection by soilborne pathogens through a direct biochemical and physiological effect. Some approaches, such as screening for low autotoxic potential and disease-resistant genotypes, proper rotation and intercropping, proper soil and plant residue management, adoption of resistant plant species as rootstocks, introduction of beneficial microbes, physical removal of phytotoxins, and soil sterilization, are proposed. We discuss the challenges that we are facing and possible approaches to these.


Asunto(s)
Feromonas/metabolismo , Fenómenos Fisiológicos de las Plantas , Microbiología del Suelo , Suelo/química , Agricultura , Enfermedades de las Plantas/etiología , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Plantas/microbiología , Rizosfera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...