Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 407: 131134, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038713

RESUMEN

Livestock manure is a hotspot for antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and an important contributor to antibiotic resistance in non-clinical settings. This study investigated the effectiveness and potential mechanisms of a novel composting technology, semi-permeable membrane covered hyperthermophilic composting (smHTC), in removal of ARGs and MGEs in chicken manure. Results showed that smHTC was more efficient in removal of ARGs and MGEs (92% and 93%) compared to conventional thermophilic composting (cTC) (76% and 92%). The efficient removal in smHTC is attributed to direct or indirect negative effects caused by the high temperature, including reducing the involvement of bio-available heavy metals (HMs) in co-selection processes of antibiotic resistance, decreasing the bacterial abundance and diversity, suppressing the horizontal gene transfer and killing potential ARGs hosts. Overall, smHTC can efficiently remove the resistome in livestock manure, reducing the risk to crops and humans from ARGs residues in compost products.


Asunto(s)
Compostaje , Farmacorresistencia Microbiana , Ganado , Estiércol , Membranas Artificiales , Estiércol/microbiología , Compostaje/métodos , Animales , Farmacorresistencia Microbiana/genética , Pollos , Antibacterianos/farmacología , Permeabilidad , Secuencias Repetitivas Esparcidas
2.
Microorganisms ; 12(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674627

RESUMEN

Soil salinization poses a global threat to terrestrial ecosystems. Soil microorganisms, crucial for maintaining ecosystem services, are sensitive to changes in soil structure and properties, particularly salinity. In this study, contrasting dynamics within the rhizosphere and bulk soil were focused on exploring the effects of heightened salinity on soil microbial communities, evaluating the influences shaping their composition in saline environments. This study observed a general decrease in bacterial alpha diversity with increasing salinity, along with shifts in community structure in terms of taxa relative abundance. The size and stability of bacterial co-occurrence networks declined under salt stress, indicating functional and resilience losses. An increased proportion of heterogeneous selection in bacterial community assembly suggested salinity's critical role in shaping bacterial communities. Stochasticity dominated fungal community assembly, suggesting their relatively lower sensitivity to soil salinity. However, bipartite network analysis revealed that fungi played a more significant role than bacteria in intensified microbial interactions in the rhizosphere under salinity stress compared to the bulk soil. Therefore, microbial cross-domain interactions might play a key role in bacterial resilience under salt stress in the rhizosphere.

3.
ACS Biomater Sci Eng ; 9(6): 3253-3261, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37146257

RESUMEN

The conductive microbial nanowires of Geobacter sulfurreducens serve as a model for long-range extracellular electron transfer (EET), which is considered a revolutionary "green" nanomaterial in the fields of bioelectronics, renewable energy, and bioremediation. However, there is no efficient pathway to induce microorganisms to express a large amount of microbial nanowires. Here, several strategies have been used to successfully induce the expression of microbial nanowires. Microbial nanowire expression was closely related to the concentration of electron acceptors. The microbial nanowire was around 17.02 µm in length, more than 3 times compared to its own length. The graphite electrode was used as an alternative electron acceptor by G. sulfurreducens, which obtained a fast start-up time of 44 h in microbial fuel cells (MFCs). Meanwhile, Fe(III) citrate-coated sugarcane carbon and biochar were prepared to test the applicability of these strategies in the actual microbial community. The unsatisfied EET efficiency between c-type cytochrome and extracellular insoluble electron receptors promoted the expression of microbial nanowires. Hence, microbial nanowires were proposed to be an effective survival strategy for G. sulfurreducens to cope with various environmental stresses. Based on this top-down strategy of artificially constructed microbial environmental stress, this study is of great significance for exploring more efficient methods to induce microbial nanowires expression.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nanocables , Compuestos Férricos/metabolismo , Transporte de Electrón , Conductividad Eléctrica
4.
Sci Total Environ ; 837: 155805, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561907

RESUMEN

Phyllosphere and numerous phyllospheric microbiomes present a huge potential for air pollution mitigation. Despite research investigating the microbial compositions in the phyllosphere, the successions and interactions of the phyllospheric microbiome under ammonia gas (NH3) stress remain poorly understood. Herein, we performed 16S rDNA, the internal transcribed spacer (ITS) profiling and a quantitative microbial element cycling (QMEC) method to reveal successions, co-occurrence, and N-cycling functions changes of phyllospheric bacteria and fungi during NH3 exposure. The NH3 input mainly elevated ammonium (NH4+-N) and total nitrogen (TN) levels on the leaf surface. The exposure in the phyllosphere decreased fungal concentration with a homogeneity increase while enhanced bacterial concentration with a noticeable richness drop. Both short-term (2-week) and long-term (6-week) exposure induced significant changes in microbial compositions. Bacterial genera (Nocardioides, Pseudonocardia) and fungal genera (Alternaria, Acremonium) dominated throughout the exposure. Intensive microbial interactions compared to that in the natural phyllosphere were observed via network analysis. Our results showed that N-cycling functional genes were largely stimulated by the exposure and might, in turn contribute to NH3 pollution buffer and alleviation via microbial metabolism. This study extended the knowledge on microbial responses to NH3 exposure in the phyllosphere and enlightened phylloremediation on NH3 through the microbial role.


Asunto(s)
Compuestos de Amonio , Microbiota , Amoníaco , Bacterias/genética , Hojas de la Planta/microbiología
5.
Microorganisms ; 10(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35456732

RESUMEN

Ozone is a typical hazardous pollutant in Earth's lower atmosphere, but the phyllosphere and its microbiome are promising for air pollution remediation. Despite research to explore the efficiency and mechanism of ozone phylloremediation, the response and role of the phyllosphere microbiome remains untouched. In this study, we exposed Euonymus japonicus to different ozone levels and revealed microbial successions and roles of the phyllosphere microbiome during the exposure. The low-level exposure (156 ± 20 ppb) induced limited response compared to other environmental factors. Fungi failed to sustain the community richness and diversity, despite the stable ITS concentration, while bacteria witnessed an abundance loss. We subsequently elevated the exposure level to 5000~10,000 ppb, which considerably deteriorated the bacterial and fungal diversity. Our results identified extremely tolerant species, including bacterial genera (Curtobacterium, Marmoricola, and Microbacterium) and fungal genera (Cladosporium and Alternaria). Compositional differences suggested that most core fungal taxa were related to plant diseases and biocontrol, and ozone exposure might intensify such antagonism, thus possibly influencing plant health and ozone remediation. This assumption was further evidenced in the functional predictions via a pathogen predominance. This study shed light on microbial responses to ozone exposure in the phyllosphere and enlightened the augmentation of ozone phylloremediation through the microbial role.

6.
J Hazard Mater ; 430: 128371, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35150993

RESUMEN

The phyllosphere plays a role in alleviating air pollution, potentially leveraging the native microorganisms for further enhancement. It remains unclear how phyllospheric microorganisms respond to nitrogen oxide (NOx) pollution and participate in abatement. Here, we exposed Schefflera octophylla to NOx to reveal microbial succession patterns and interactions in the phyllosphere. During exposure, phyllospheric ammonium (NH4+-N) significantly increased, with different alpha diversity changes between bacteria and fungi. Community successions enclosed core taxa with relatively excellent tolerance, represented by bacterial genera (Norcardiodes, Aeromicrobium) and fungal genera (Talaromyces, Acremonium). The exposure eliminated specific pathogens (e.g., Zymoseptoria) and benefitted plant growth-promoting populations (e.g., Talaromyces, Exiguobacterium), which might favor plant disease control, improve plant health and thus buffer NOx pollution. Cooccurrence networks revealed more negative correlations among bacteria and closer linkages among fungi during exposure. Our results also showed a functional shift from the predominance of pathotrophs to saprotrophs. Our study identified microbial successions and interactions during NOx pollution and thus enlightened prospective taxa and potential roles of phyllospheric microorganisms in NOx remediation.


Asunto(s)
Bacterias , Hongos , Plantas , Estudios Prospectivos
7.
J Hazard Mater ; 425: 127496, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34896709

RESUMEN

Current knowledge of dissolved organic matter (DOM) in semi-permeable membrane-covered thermophilic compost (smHTC) is limited. Therefore, this study provided a comprehensive characterization of composition and transformation of DOM in smHTC using multiple spectroscopic methods and ultrahigh resolution mass spectrometry. The results showed that the values of SUVA280, SUVA254, A240-400 (0.042, 0.048, 34.193) in smHTC were higher than those of conventional thermophilic composting (cTC) (0.030, 0.037, 18.348), and the increment of PV,n in smHTC were 2.4 times higher than that of cTC. These results suggested that smHTC accelerated the humification process by promoting the degradation of labile DOM and the production of humus-like substances. Mass spectrometry further confirmed that the DOM of smHTC possessed higher degree of aromatization and humification, based on the lower H/C (1.14), higher aromaticity index (0.34) and double bond equivalence (10.36). Additionally, smHTC increased the proportion of carboxyl-rich, unsaturated and aromatic compounds, and simultaneously improved the degradation of aliphatic/proteins, lipids, carbohydrates, along with even some refractory substances such as CHO subcategory (24.1%), especially lignin-like structures (14.8%). This investigation provided molecular insights into the composition and transformations of DOM in smHTC, and extended the current molecular mechanisms of humification in composting.


Asunto(s)
Compostaje , Materia Orgánica Disuelta , Espectrometría de Masas , Compuestos Orgánicos , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...