Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893515

RESUMEN

The adoption of green chemistry protocols in nanoparticle (NP) synthesis has exhibited substantial potential and is presently a central focus in research for generating versatile NPs applicable across a broad spectrum of applications. In this scientific contribution, we, for the first time, examined the ability of Aconitum Laeve (A. Laeve) crude extract to synthesize silver and gold nanoparticles (AgNPs@AL; AuNP@AL) and explored their potential applications in biological activities and the catalytic degradation of environmental pollutants. The synthesized NPs exhibited a distinctive surface plasmon resonance pattern, a spherical morphology with approximate sizes of 5-10 nm (TEM imaging), a crystalline architecture (XRD analysis), and potential functional groups identified by FTIR spectroscopy. The antibacterial activity was demonstrated by inhibition zones that measured 16 and 14 mm for the AgNPs@AL and AuNP@AL at a concentration of 80 µg/mL against Staphylococcus aureus and 14 and 12 mm against Escherichia coli, respectively. The antioxidant potential of the synthesized NPs was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO), and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Our findings suggest that the AuNP@AL effectively countered the tested radicals considerably, displaying IC50 values of 115.9, 103.54, and 180.85 µg/mL against DPPH, PTIO, and ABTS, respectively. In contrast, the AgNPs@AL showed IC50 values of 144.9, 116.36, and 95.39 µg/mL against the respective radicals. In addition, both the NPs presented significant effectiveness in the photocatalytic degradation of methylene blue and rhodamine B. The overall observations indicate that A. Laeve possesses a robust capability to synthesize spherical nanoparticles, exhibiting excellent dispersion and showcasing potential applications in both biological activities and environmental remediation.


Asunto(s)
Aconitum , Antibacterianos , Antioxidantes , Oro , Nanopartículas del Metal , Extractos Vegetales , Plata , Nanopartículas del Metal/química , Plata/química , Oro/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Aconitum/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Catálisis , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Tecnología Química Verde , Escherichia coli/efectos de los fármacos
2.
Front Microbiol ; 15: 1389235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711965

RESUMEN

Microcystins (MCs) are the most widespread cyanobacterial toxins in eutrophic water body. As high toxic intermediate metabolites, linearized MCs are further catalyzed by linearized microcystinase (MlrB) of Sphingopyxis sp. USTB-05. Here MlrB structure was studied by comprizing with a model representative of the penicillin-recognizing enzyme family via homology modeling. The key active sites of MlrB were predicted by molecular docking, and further verified by site-directed mutagenesis. A comprehensive enzymatic mechanism for linearized MCs biodegradation by MlrB was proposed: S77 transferred a proton to H307 to promote a nucleophilic attack on the peptide bond (Ala-Leu in MC-LR or Ala-Arg in MC-RR) of linearized MCs to form the amide intermediate. Then water was involved to break the peptide bond and produced the tetrapeptide as product. Meanwhile, four amino acid residues (K80, Y171, N173 and D245) acted synergistically to stabilize the substrate and intermediate transition states. This study firstly revealed the enzymatic mechanism of MlrB for biodegrading linearized MCs with both computer simulation and experimental verification.

3.
Biodegradation ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573500

RESUMEN

Acetaldehyde (AL), a primary carcinogen, not only pollutes the environment, but also endangers human health after drinking alcohol. Here a promising bacterial strain was successfully isolated from a white wine cellar pool in the province of Shandong, China, and identified as Bacillus velezensis-YW01 with 16 S rDNA sequence. Using AL as sole carbon source, initial AL of 1 g/L could be completely biodegraded by YW01 within 84 h and the cell-free extracts of YW01 has also been detected to biodegrade the AL, which indicate that YW01 is a high-potential strain for the biodegradation of AL. The optimal culture conditions and the biodegradation of AL of YW01 are at pH 7.0 and 38 °C, respectively. To further analyze the biodegradation mechanism of AL, the whole genome of YW01 was sequenced. Genes ORF1040, ORF1814 and ORF0127 were revealed in KEGG, which encode for acetaldehyde dehydrogenase. Furthermore, ORF0881 and ORF052 encode for ethanol dehydrogenase. This work provides valuable information for exploring metabolic pathway of converting ethanol to AL and subsequently converting AL to carboxylic acid compounds, which opened up potential pathways for the development of microbial catalyst against AL.

4.
3 Biotech ; 13(10): 329, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37670801

RESUMEN

Extensive use of phthalic acid esters (PAEs) as plasticizer causes diffusion into the environment, which posed a great threat to mankind. It was reported that Comamonas sp. was a potentially robust aromatic biodegrader. Although the biodegradation of several PAEs by Comamonas sp. was studies, the comprehensive genomic analysis of Comamonas sp. was few reported. In the present study, one promising bacterial strain for biodegrading diethyl phthalate (DEP) was successfully isolated from activated sludge and characterized as Comamonas sp. USTBZA1 based on the 16S rRNA sequence analysis. The results showed that pH 7.5, 30 °C and inoculum volume ratio of 6% were optimal for biodegradation. Initial DEP of 50 mg/L could be completely biodegrade by strain USTBZA1 within 24 h which conformed to the Gompertz model. Based on the Q-TOF LC/MS analysis, monoethyl phthalate (MEP) and phthalic acid (PA) were identified as the metabolic products of DEP biodegradation by USTBZA1. Furthermore, the whole genome of Comamonas sp. USTBZA1 was analyzed to clarify the molecular mechanism for PAEs biodegradation by USTBZA1. There were 3 and 41 genes encoding esterase/arylesterase and hydrolase, respectively, and two genes regions (pht34512 and pht4253) were responsible for the conversion of PA to protocatechuate (PCA), and two genes regions (ligCBAIKJ) were involved in PCA metabolism in USTBZA1. These results substantiated that Comamonas sp. USTBZA1 has potential application in the DEP bioremediation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03736-3.

5.
Microorganisms ; 11(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37630550

RESUMEN

High serum uric acid levels, known as hyperuricemia (HUA), are associated with an increased risk of developing gout, chronic kidney disease, cardiovascular disease, diabetes, and other metabolic syndromes. In this study, a promising bacterial strain capable of biodegrading uric acid (UA) was successfully isolated from Baijiu cellar mud using UA as the sole carbon and energy source. The bacterial strain was identified as Bacillus paramycoides-YC02 through 16S rDNA sequence analysis. Under optimal culture conditions at an initial pH of 7.0 and 38 °C, YC02 completely biodegraded an initial UA concentration of 500 mg/L within 48 h. Furthermore, cell-free extracts of YC02 were found to catalyze and remove UA. These results demonstrate the strong biodegradation ability of YC02 toward UA. To gain further insight into the mechanisms underlying UA biodegradation by YC02, the draft genome of YC02 was sequenced using Illumina HiSeq. Subsequent analysis revealed the presence of gene1779 and gene2008, which encode for riboflavin kinase, flavin mononucleotide adenylyl transferase, and flavin adenine dinucleotide (FAD)-dependent urate hydroxylase. This annotation was based on GO or the KEEG database. These enzymes play a crucial role in the metabolism pathway, converting vitamin B2 to FAD and subsequently converting UA to 5-hydroxyisourate (HIU) with the assistance of FAD. Notably, HIU undergoes a slow non-enzymatic breakdown into 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and (S)-allantoin. The findings of this study provide valuable insights into the metabolism pathway of UA biodegradation by B. paramycoides-YC02 and offer a potential avenue for the development of bacterioactive drugs against HUA and gout.

6.
Foods ; 12(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569166

RESUMEN

ß-Nicotinamide mononucleotide (NMN), as a key precursor of an essential coenzyme nicotinamide adenine dinucleotide (NAD+), is most recognized for its pathological treatment effects and anti-aging functions. Here, the biosynthesis of NMN from the inexpensive feedstock substrate nicotinamide (Nam) using previously isolated Saccharomyces boulardii-YS01 was investigated. Ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UPLC-ESI-QqQ-MS/MS) was established for the determination and targeted analysis of NMN, nicotinamide riboside (NR), nicotinic acid (NA), Nam, and NAD+ in YS01 cells. Satisfactory precision and accuracy values were achieved with recoveries above 70% for five analytes. A 5~100 times higher content of NMN in YS01 (0.24~103.40 mg/kg) than in some common foods (0.0~18.8 mg/kg) was found. Combined with genome sequencing and enzyme function annotation, target-acting enzymes, including nudC, ISN1, URH1, PNP, and SIR2, were identified, and the biosynthetic pathway of NMN via Nam was suggested. The initial addition of 3 g/L Nam in the culture medium effectively promoted the generation of NMN, which raised the content of NMN by 39%. This work supplements an alternative resource for NMN production and lays the theoretical foundation for the further construction of NMN transgenic synthesis hosts.

7.
Toxins (Basel) ; 15(8)2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37624251

RESUMEN

Hepatotoxic microcystins (MCs) are produced and released by the harmful bloom-forming cyanobacteria, which severely threaten drinking water safety and human health due to their high toxicity, widespread distribution, and structural stability. The linearized microcystinase (MlrB) further hydrolyses the poisonous linearized MCs produced by the microcystinase-catalysed MCs to form tetrapeptides. Here, the purification and activity of MlrB were investigated. The results showed that the linearized products generated by 12.5 mg/L MC-LR and MC-RR were removed by purified recombinant MlrB at a protein concentration of 1 mg/L within 30 min. The high catalytic activity of MlrB can be obtained via heterologous expression and affinity purification, which lays the foundation for further studies on the properties and mechanism of MCs biodegradation enzymes.


Asunto(s)
Microcistinas , Sphingomonadaceae , Humanos , Sphingomonadaceae/genética , Biodegradación Ambiental , Catálisis , Cromatografía de Afinidad
8.
J Agric Food Chem ; 71(20): 7904-7920, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167631

RESUMEN

Volatile esters are major aromas contributing to the organoleptic quality of apple fruit. However, the molecular mechanisms underlying the regulation of volatile ester biosynthesis in apple remain elusive. This study investigated the volatile profiles and transcriptomes of 'Qinguan' (QG) apple fruit during development and/or postharvest storage. Although the constitution of volatiles varied widely between the peel and flesh, the volatile profiles of the peel and flesh of ripening QG fruit were dominated by volatile esters. WGCNA results suggested that 19 genes belonging to ester biosynthesis pathways and 11 hub transcription factor genes potentially participated in the biosynthesis and regulation of esters. To figure out key regulators of ester biosynthesis, correlation network analysis, dual-luciferase assays, and yeast one-hybrid assay were conducted and suggested that MdMYB94 trans-activated the MdAAT2 promoter and participated in the regulation of ester biosynthesis. This study provides a framework for understanding ester biosynthesis and regulation in apple.


Asunto(s)
Malus , Malus/metabolismo , Transcriptoma , Ésteres/metabolismo , Frutas/metabolismo , Metabolómica , Regulación de la Expresión Génica de las Plantas
9.
J Anim Sci Biotechnol ; 13(1): 68, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35706001

RESUMEN

BACKGROUND: Elevated ambient temperature-caused heat stress is a major concern for livestock production due to its negative impact on animal feed intake, growth, reproduction, and health. Particularly, the germ cells are extremely sensitive to the heat stress. However, the effective approach and strategy regarding how to protect mammalian oocytes from heat stress-induced defects have not been determined. METHODS: Germinal vesicle (GV) porcine oocytes were cultured at 41.5 °C for 24 h to induce heat stress, and then cultured at 38.5 °C to the specific developmental stage for subsequent analysis. Nicotinamide mononucleotide (NMN) was dissolved in water to 1 mol/L for a stock solution and further diluted with the maturation medium to the final concentrations of 10 µmol/L, 20 µmol/L, 50 µmol/L or 100 µmol/L, respectively, during heat stress. Immunostaining and fluorescence intensity quantification were applied to assess the effects of heat stress and NMN supplementation on the key processes during the oocyte meiotic maturation. RESULTS: Here, we report that NMN supplementation improves the quality of porcine oocytes under heat stress. Specifically, we found that heat stress resulted in oocyte maturation failure by disturbing the dynamics of meiotic organelles, including the cytoskeleton assembly, cortical granule distribution and mitochondrial function. In addition, heat stress induced the production of excessive reactive oxygen species (ROS) and DNA damage, leading to the occurrence of apoptosis in oocytes and subsequent embryonic development arrest. More importantly, we validated that supplementation of NMN during heat stress restored the meiotic defects during porcine oocyte maturation. CONCLUSIONS: Taken together, our study documents that NMN supplementation is an effective approach to improve the quality of oocytes under heat stress by promoting both nuclear and cytoplasmic maturation.

10.
Bioengineered ; 13(3): 4951-4963, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35164656

RESUMEN

It has been reported that long noncoding RNAs (LncRNAs) take part in the progression and occurrence of rheumatoid arthritis (RA). The current work aimed to dig the effect of lncRNA OSER1-AS1 on RA and the associated mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) was made to decide that OSER1-AS1 was significantly lowly expressed in synovial tissue and serum of RA patients, which was consistent in RA-FLSs cell lines. The result of ROC curve indicated that OSER1-AS1 could be a diagnostic biomarker for RA patients. Cell Counting Kit-8 assay (CCK-8), EdU staining and flow cytometry were performed to explore the effect of OSER1-AS1 on RA-FLSs in vitro. Relative levels of interleukin-1 (IL-1), interleukin-6 (IL-6), matrix metalloproteinases-3 (MMP-3) were detected by ELISA and the result displayed that overexpression of OSER1-AS1 inhibited RA-induced inflammatory production of IL-1, IL-6 and MMP3. Bioinformatics analysis, luciferase reporter, RNA immunoprecipitation assays (RIP) and RNA pull-down assay were conducted to confirm the binding between microRNA-1298-5p (miR-1298-5p) and OSER1-AS1 or E2F transcription factor 1 (E2F1). Mechanistically, OSER1-AS1 serves as a competing endogenous (ceRNA) in RA-FLSs through the sponge of miR-1298-5p and increase in the expression of E2F1. Further restoration experiments revealed that miR-1298-5p mimics and E2F1 silencing could partially reverse the inhibiting effect of OSER1-AS1 overexpression on propagation and apoptosis in RA-FLSs. The results illustrated the biological mechanism of OSER1-AS1/miR-1298-59/E2F1 axis in RA progression. The outcomes indicated that OSER1-AS1 might be adopted as a hopeful diagnostic and therapeutic objective for RA.


Asunto(s)
Artritis Reumatoide , Factor de Transcripción E2F1 , MicroARNs , ARN Largo no Codificante , Sinoviocitos , Apoptosis/genética , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Proliferación Celular/genética , Factor de Transcripción E2F1/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Interleucina-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sinoviocitos/metabolismo
11.
Food Chem ; 352: 129312, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33652193

RESUMEN

High-value acacia honey is often adulterated with inexpensive high fructose corn syrup (HFCS), due to their similar color and sugar composition. α­Dicarbonyl compounds formed by Maillard reaction or caramelization during heat treatment or storage, differ between HFCS and honey due to differences in starting materials and processing methods. In this study, we compared α-dicarbonyl compounds in acacia honey and HFCS by Ion Mobility-Mass Spectrometry and multivariate statistical analysis. Through α-dicarbonyl compound derivatization with o-phenylenediamine, we screened a marker with 189.1023 m/z and 139.3 Å2 Collision Cross-Section that can distinguish HFCS from acacia honey. Nuclear magnetic resonance spectra identified this marker compound as 3,4-dideoxypentosulose. We then used chromatography-coupled tandem mass spectrometry to quantitate 3,4-dideoxypentosulose in market samples of honey and HFCS and found that 3,4-dideoxypentosulose was negligible (<0.098 mg/kg) in honey, but prevalent in HFCS (≧1.174 mg/kg), indicating 3,4-dideoxypentosulose can serve as an alternative indicator of HFCS adulteration of acacia honey.


Asunto(s)
Acacia/química , Bebidas/análisis , Cromatografía Líquida de Alta Presión , Análisis de los Alimentos/métodos , Jarabe de Maíz Alto en Fructosa/análisis , Espectrometría de Movilidad Iónica , Espectrometría de Masas en Tándem , Calidad de los Alimentos , Fraude/prevención & control
12.
J Health Commun ; 20(5): 616-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25845031

RESUMEN

Cancer is now the leading cause of death in China. Effective communication about cancer risk and prevention is an important component of cancer control. Yet, research in this area is very limited in China. This study used probability sample survey data from 2 Chinese cities (Beijing and Hefei, Anhui Province) to investigate potential predictors of self-initiated cancer information seeking. Analysis showed that cancer information seekers in China were likely to be married, relatively educated, earning modest incomes, living in rural areas, smoking occasionally, having a family cancer history, relatively trusting of the media for health information, somewhat knowledgeable about cancer, having nonfatalistic attitudes about cancer, and seeing a personal need for more cancer information. The pattern of results, particularly the lack of influence of personal health and risk perception factors, highlights the possibility that seeking for others might be more prevalent than seeking for self in China. Overall, findings suggest that emphasizing family need and mobilizing family support might be a productive approach to cancer communication interventions in China.


Asunto(s)
Información de Salud al Consumidor/estadística & datos numéricos , Conducta en la Búsqueda de Información , Neoplasias , Adolescente , Adulto , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores Socioeconómicos , Adulto Joven
13.
Nicotine Tob Res ; 16(6): 899-903, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24668289

RESUMEN

INTRODUCTION: Knowledge about health effects of smoking motivates quit attempts and sustained abstinence among smokers and also predicts greater acceptance of tobacco control efforts such as cigarette taxes and public smoking bans. We examined whether smokers in China, the world's largest consumer of cigarettes, recognized their heightened personal risk of cancer relative to nonsmokers. METHODS: A sample of Chinese people (N = 2,517; 555 current smokers) from 2 cities (Beijing and Hefei) estimated their personal risk of developing cancer, both in absolute terms (overall likelihood) and in comparative terms (relative to similarly aged people). RESULTS: Controlling for demographics, smokers judged themselves to be at significantly lower risk of cancer than did nonsmokers on the comparative measure. No significant difference emerged between smokers and nonsmokers in absolute estimates. CONCLUSIONS: Smokers in China did not recognize their heightened personal risk of cancer, possibly reflecting ineffective warning labels on cigarette packs, a positive affective climate associated with smoking in China, and beliefs that downplay personal vulnerability among smokers (e.g., I don't smoke enough to increase my cancer risk; I smoke high-quality cigarettes that won't cause cancer).


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Neoplasias/psicología , Fumar/psicología , Adolescente , Adulto , Anciano , China , Ciudades , Demografía , Femenino , Humanos , Juicio , Masculino , Persona de Mediana Edad , Neoplasias/epidemiología , Riesgo , Fumar/efectos adversos , Encuestas y Cuestionarios , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...