Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567487

RESUMEN

Recently, inverted perovskite solar cells (PeSCs) have witnessed significant advancements; however, their long-term stability remains a challenge because of the oxidation of silver cathodes to form AgI by mobile iodides. To overcome this problem, we propose the integration of an electron-deficient naphthalene diimide-based zwitterion (NDI-ZI) as the cathode interlayer. Compared to the physical ion-blocking layer, it effectively captures ions by forming ionic bonds via electrostatic Coulombic interaction to suppress the migration of iodide and Ag ions. The NDI-ZI interlayer also suppresses the shunt paths and modulates the work function of the Ag electrode by forming interface dipoles, thereby enhancing charge extraction. FA0.85Cs0.15PbI3 based PeSCs incorporating NDI-ZI exhibited a noticeably high power conversion efficiency of up to 23.3% and outstanding stability, maintaining ∼80% of their initial performance over 1500 h at 85 °C and over 500 h under continuous 1-sun illumination. This study highlights the potential of a zwitterionic cathode interlayer in diverse perovskite optoelectronic devices, leading to their improved efficiency and stability.

2.
Adv Mater ; 36(18): e2311154, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38174953

RESUMEN

Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost-effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead-free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high-selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron-like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.


Asunto(s)
Implantes Absorbibles , Magnetismo , Medicina de Precisión , Tecnología Inalámbrica , Papel , Medicina de Precisión/instrumentación , Humanos , Masculino , Animales , Ratas , Encéfalo , Electrónica Médica/instrumentación
3.
Artículo en Inglés | MEDLINE | ID: mdl-37983071

RESUMEN

Perovskite defects are a major hurdle in the efficiency and stability of perovskite solar cells (PSCs). While various defect passivation materials have been explored, most are insulators that hinder charge transport. This study investigates the potential of two different π-conjugated polyelectrolytes (CPEs), MPS2-TEA and PCPDTBT2-TMA, as semiconducting additives in PSCs. The CPEs differ in electrical conductivity, offering a unique approach to bridge defect mitigation and charge carrier transport. Unlike previous uses of CPEs mainly as interlayers or charge transport layers, we explore their direct effect on defect passivation within a perovskite layer. Secondary ion microscopy reveals the even distribution of CPEs within the perovskite layer and their efficient defect passivation potential is studied through various spectroscopic analyses. Comparing MPS2-TEA and PCPDTBT2-TMA, we find MPS2-TEA to be superior in defect passivation. The highly conductive nature of PCPDTBT2-TMA due to self-doping diminishes its defect passivation ability. The negative sulfonate groups in the side chains of PCPDTBT2-TMA stabilize polarons, reducing defect passivation capability. Finally, the PSCs with MPS2-TEA achieve remarkable power conversion efficiencies (PCEs) of 22.7% for 0.135 cm2 and 20.0% for large-area (1 cm2) cells. Furthermore, the device with MPS2-TEA maintained over 87.3% of initial PCE after 960 h at continuous 1-sun illumination and 89% of PCE after 850 h at 85 °C in a nitrogen glovebox without encapsulation. This highlights CPEs as promising defect passivation additives, unlocking potential for improved efficiency and stability not only in PSCs but also in wider applications.

4.
ACS Appl Mater Interfaces ; 15(20): 24648-24657, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37170066

RESUMEN

Stretchable sensors based on conductive hydrogels have attracted considerable attention for wearable electronics. However, their practical applications have been limited by the low sensitivity, high hysteresis, and long response times of the hydrogels. In this study, we developed high-performance poly(vinyl alcohol) (PVA)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) based hydrogels post-treated with NaCl, which showed excellent mechanical properties, fast electrical response, and ultralow hysteresis properties. The hydrogels also demonstrated excellent self-healing properties with electrical and mechanical properties comparable to those of the original hydrogel and more than 150% elongation at break after the self-healing process. The high performance of the optimized hydrogels was attributed to the enhanced intermolecular forces between the PVA matrix and PEDOT:PSS, the favorable conformational change of the PEDOT chains, and an increase in localized charges in the hydrogel networks. The hydrogel sensors were capable of tracking large human motion and subtle muscle action in real time with high sensitivity, a fast response time (0.88 s), and low power consumption (<180 µW). Moreover, the sensor was able to monitor human respiration due to chemical changes in the hydrogel. These highly robust, stretchable, conductive, and self-healing PVA/PEDOT:PSS hydrogels, therefore, show great application potential as wearable sensors for monitoring human activity.

5.
Adv Mater ; 35(24): e2210511, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36930970

RESUMEN

Further optimization of perovskite light-emitting diodes (PeLEDs) is impeded by crystal deformation caused by residual stress and defect formation with subsequent non-radiative recombination. Molecular additives for defect passivation are widely studied; however, the majority have insulating properties that hinder charge injection and transport. Herein, highly efficient green-emitting PeLEDs are reported by introducing semiconducting molecular additives (Fl-OEGA and Fl-C8A). Transmission electron microscopy shows that conjugated additives exist primarily at the grain boundaries of perovskite, and Kelvin probe force microscopy confirms that the variation in contact potential difference between grain boundaries and perovskite crystal domains is significantly reduced. The residual tensile stress is reduced by 13% and the activation energy for ion migration increases in the Fl-OEGA-treated perovskite film, compared to those of the film without additives. Compared to insulating 2,2'-(ethylenedioxy)diethylamine (EDEA), the introduction of semiconducting additives prevents a significant reduction in the charge-transport capability. Furthermore, the PeLEDs with Fl-OEGA show a negligible shift in the turn-on voltage and a significantly smaller decrease in the current density with increasing Fl-OEGA compared to the devices with EDEA. Finally, the 3D CsPbBr3 -PeLEDs show the highest external quantum efficiency of 21.3% by the incorporation of semiconducting Fl-OEGA as a new multifunctional additive.

6.
Small ; 19(17): e2206668, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36703517

RESUMEN

Low-dimensional Cu(I)-based metal halide materials are gaining attention due to their low toxicity, high stability and unique luminescence mechanism, which is mediated by self-trapped excitons (STEs). Among them, Cs5 Cu3 Cl6 I2 , which emits blue light, is a promising candidate for applications as a next-generation blue-emitting material. In this article, an optimized colloidal process to synthesize uniform Cs5 Cu3 Cl6 I2 nanocrystals (NCs) with a superior quantum yield (QY) is proposed. In addition, precise control of the synthesis parameters, enabling anisotropic growth and emission wavelength shifting is demonstrated. The synthesized Cs5 Cu3 Cl6 I2 NCs have an excellent photoluminescence (PL) retention rate, even at high temperature, and exhibit high stability over multiple heating-cooling cycles under ambient conditions. Moreover, under 850-nm femtosecond laser irradiation, the NCs exhibit three-photon absorption (3PA)-induced PL, highlighting the possibility of utilizing their nonlinear optical properties. Such thermally stable and highly luminescent Cs5 Cu3 Cl6 I2 NCs with nonlinear optical properties overcome the limitations of conventional blue-emitting nanomaterials. These findings provide insights into the mechanism of the colloidal synthesis of Cs5 Cu3 Cl6 I2 NCs and a foundation for further research.

7.
Adv Sci (Weinh) ; 10(3): e2205127, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36417576

RESUMEN

Defect states at the surface and grain boundaries of perovskite films have been known to be major determinants impairing the optoelectrical properties of perovskite films and the stability of perovskite solar cells (PeSCs). Herein, an n-type conjugated small-molecule additive based on fused-unit dithienothiophen[3,2-b]-pyrrolobenzothiadiazole-core (JY16) is developed for efficient and stable PeSCs, where JY16 possesses the same backbone as the widely used Y6 but with long-linear n-hexadecyl side chains rather than branched side chains. Upon introducing JY16 into the perovskite films, the electron-donating functional groups of JY16 passivate defect states in perovskite films and increase the grain size of perovskite films through Lewis acid-base interactions. Compared to Y6, JY16 exhibits superior charge mobility owing to its molecular packing ability and prevents decomposition of perovskite films under moisture conditions owing to their hydrophobic characteristics, improving the charge extraction ability and moisture stability of PeSCs. Consequently, the PeSC with JY16 shows a high power conversion efficiency of 21.35%, which is higher than those of the PeSC with Y6 (20.12%) and without any additive (18.12%), and outstanding moisture stability under 25% relative humidity, without encapsulation. The proposed organic semiconducting additive will prove to be crucial for achieving highly efficient and moisture stable PeSCs.

8.
Adv Mater ; 35(8): e2209486, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36496257

RESUMEN

Semiconducting lead halide perovskite nanocrystals (PNCs) are regarded as promising candidates for next-generation optoelectronic devices due to their solution processability and outstanding optoelectronic properties. While the field of light-emitting diodes (LEDs) and photovoltaics (PVs), two prime examples of optoelectronic devices, has recently seen a multitude of efforts toward high-performance PNC-based devices, realizing both devices with high efficiencies and stabilities through a single PNC processing strategy has remained a challenge.  In this work, diphenylpropylammonium (DPAI) surface ligands, found through a judicious ab-initio-based ligand search, are shown to provide a solution to this problem. The universal PNC ink with DPAI ligands presented here, prepared through a solution-phase ligand-exchange process, simultaneously allows single-step processed LED and PV devices with peak electroluminescence external quantum efficiency of 17.00% and power conversion efficiency of 14.92% (stabilized output 14.00%), respectively. It is revealed that a careful design of the aromatic rings such as in DPAI is the decisive factor in bestowing such high performances, ease of solution processing, and improved phase stability up to 120 days. This work illustrates the power of ligand design in producing PNC ink formulations for high-throughput production of optoelectronic devices; it also paves a path for "dual-mode" devices with both PV and LED functionalities.

9.
Small ; 18(52): e2205011, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36354161

RESUMEN

Metal halide perovskites (MHPs) have gained traction as emitters owing to their excellent optical properties, such as facile bandgap tuning, defect tolerance, and high color purity. Nevertheless, blue-emitting MHP light-emitting diodes (LEDs) show only marginal progress in device efficiency compared with green and red LEDs. Herein, the origin of the drop in efficiency of blue-emitting perovskite nanocrystals (PNCs) by mixing halides and the genesis of Ruddlesden-Popper faults (RPFs) in CsPbBrX Cl3-X nanocrystals is investigated. Using scanning transmission electron microscopy and density functional theory calculations, the authors have found that RPFs induce possible nonradiative recombination pathways owing to the high chloride vacancy concentration nearby. The authors further confirm that the blue-emitting PNCs do not show RPFs post-halide exchange in the CsPbBr3 nanocrystals. By introducing the post-halide exchange treatment, high-efficiency pure blue-emitting (464 nm) PNC-based LEDs with an external quantum efficiency of 2.1% and excellent spectral stability with a full-width at half-maximum of 14 nm are obtained.

10.
Sci Adv ; 8(43): eadd0697, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36288304

RESUMEN

High-definition red/green/blue (RGB) pixels and deformable form factors are essential for the next-generation advanced displays. Here, we present ultrahigh-resolution full-color perovskite nanocrystal (PeNC) patterning for ultrathin wearable displays. Double-layer transfer printing of the PeNC and organic charge transport layers is developed, which prevents internal cracking of the PeNC film during the transfer printing process. This results in RGB pixelated PeNC patterns of 2550 pixels per inch (PPI) and monochromic patterns of 33,000 line pairs per inch with 100% transfer yield. The perovskite light-emitting diodes (PeLEDs) with transfer-printed active layers exhibit outstanding electroluminescence characteristics with remarkable external quantum efficiencies (15.3, 14.8, and 2.5% for red, green, and blue, respectively), which are high compared to the printed PeLEDs reported to date. Furthermore, double-layer transfer printing enables the fabrication of ultrathin multicolor PeLEDs that can operate on curvilinear surfaces, including human skin, under various mechanical deformations. These results highlight that PeLEDs are promising for high-definition full-color wearable displays.

11.
ACS Appl Mater Interfaces ; 14(4): 5578-5585, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35040614

RESUMEN

Ternary CuZrTi metallic glass thin films synthesized by sputtering are suggested as highly flexible and corrosion-resistant encapsulation materials. Unlike nanocrystalline Cu and binary CuZr metallic glass thin films, the ternary CuZrTi metallic glass thin films retain amorphous structure and do not oxidize even after 1000 h in an accelerated harsh environment at 85 °C with 85% relative humidity. The encapsulation performance of 260 nm thick ternary CuZrTi metallic glass is maintained even after 1000 bending cycles at a 3% tensile strain, corresponding to 70% of the elastic deformation limit, according to the results of a uniaxial tensile test. Because of the enhanced mechanical flexibility and reliability of the ternary CuZrTi metallic glass thin films, they have been applied to flexible organic solar cells as an encapsulation material.

12.
Small ; 18(5): e2104933, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34846779

RESUMEN

π-Conjugated polyelectrolytes (CPEs) have been studied as interlayers on top of a separate hole transport layer (HTL) to improve the wetting, interfacial defect passivation, and crystal growth of perovskites. However, very few CPE-based HTLs have been reported without rational molecular design as ideal HTLs for perovskite solar cells (PeSCs). In this study, the authors synthesize a triphenylamine-based anionic CPE (TPAFS-TMA) as an HTL for p-i-n-type PeSCs. TPAFS-TMA has appropriate frontier molecular orbital (FMO) levels similar to those of the commonly used poly(bis(4-phenyl)-2,4,6-trimethylphenylamine) (PTAA) HTL. The ionic and semiconducting TPAFS-TMA shows high compatibility, high transmittance, appropriate FMO energy levels for hole extraction and electron blocking, as well as defect passivating properties, which are confirmed using various optical and electrical analyses. Thus, the PeSC with the TPAFS-TMA HTL exhibits the best power conversion efficiency (PCE) of 20.86%, which is better than that of the PTAA-based device (PCE of 19.97%). In addition, it exhibits negligible device-to-device variations in its photovoltaic performance, contrary to the device with PTAA. Finally, a large-area PeSC (1 cm2 ) and mini-module (3 cm2 ), showing PCEs of 19.46% and 18.41%, respectively, are successfully fabricated. The newly synthesized TPAFS-TMA may suggest its great potential as an HTL for large-area PeSCs.


Asunto(s)
Energía Solar , Compuestos de Calcio/química , Óxidos/química , Polielectrolitos , Titanio
13.
Adv Sci (Weinh) ; 9(5): e2104660, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34957694

RESUMEN

Although metal halide perovskites are candidate high-performance light-emitting diode (LED) materials, blue perovskite LEDs are problematic: mixed-halide materials are susceptible to phase segregation and bromide-based perovskite quantum dots (QDs) have low stability. Herein, a novel strategy for highly efficient, stable cesium lead bromide (CsPbBr3 ) QDs via in situ surface reconstruction of CsPbBr3 -Cs4 PbBr6 nanocrystals (NCs) is reported. By controlling precursor reactivity, the ratio of CsPbBr3 to Cs4 PbBr6 NCs is successfully modulated. A high photoluminescence quantum yield (PLQY) of >90% at 470 nm is obtained because octahedron CsPbBr3 QD surface defects are removed by the Cs4 PbBr6 NCs. The defect-engineered QDs exhibit high colloidal stability, retaining >90% of their initial PLQY after >120 days of ambient storage. Furthermore, thermal stability is demonstrated by a lack of heat-induced aggregation at 120 °C. Blue LEDs fabricated from CsPbBr3 QDs with reconstructed surfaces exhibit a maximum external quantum efficiency of 4.65% at 480 nm and excellent spectral stability.

14.
ACS Appl Mater Interfaces ; 13(39): 46894-46901, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34546696

RESUMEN

The lack of highly impermeable and highly flexible encapsulation materials is slowing the development of flexible organic solar cells. Here, a transparent and low-temperature synthetic alumina single layer is suggested as a highly impermeable and a highly flexible encapsulation material for organic solar cells. While the water vapor transmission rate (WVTR) is maintained up to 100,000 bending cycles for a 25 mm bending radius (corresponding to 8.1% of the elastic deformation limit), as measured by in situ tensile testing with free-standing 50 nm-thick alumina films, the WVTR degraded gradually depending on the bending radius and bending cycles for bending radii less than 25 mm. The degradation of the WVTR in cyclic deformation within the elastic deformation limit is investigated, and it is found to be due to the formation of pinholes by a bond-switching mechanism. Also, encapsulated organic solar cells with alumina films are found to maintain 80% of initial efficiency for 2 weeks even after cyclic bending with a 4 mm bending radius.

15.
Nature ; 591(7848): 72-77, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658694

RESUMEN

Lead halide perovskites are promising semiconductors for light-emitting applications because they exhibit bright, bandgap-tunable luminescence with high colour purity1,2. Photoluminescence quantum yields close to unity have been achieved for perovskite nanocrystals across a broad range of emission colours, and light-emitting diodes with external quantum efficiencies exceeding 20 per cent-approaching those of commercial organic light-emitting diodes-have been demonstrated in both the infrared and the green emission channels1,3,4. However, owing to the formation of lower-bandgap iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet been realized5,6. Here we report the treatment of mixed-halide perovskite nanocrystals with multidentate ligands to suppress halide segregation under electroluminescent operation. We demonstrate colour-stable, red emission centred at 620 nanometres, with an electroluminescence external quantum efficiency of 20.3 per cent. We show that a key function of the ligand treatment is to 'clean' the nanocrystal surface through the removal of lead atoms. Density functional theory calculations reveal that the binding between the ligands and the nanocrystal surface suppresses the formation of iodine Frenkel defects, which in turn inhibits halide segregation. Our work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects. This is critical to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications-such as photovoltaics-for which bandgap stability is required.

16.
Adv Mater ; 32(51): e2002176, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32886378

RESUMEN

Despite their low exciton-binding energies, metal halide perovskites are extensively studied as light-emitting materials owing to narrow emission with high color purity, easy/wide color tunability, and high photoluminescence quantum yields. To improve the efficiency of perovskite light-emitting diodes (PeLEDs), much effort has been devoted to controlling the emitting layer morphologies to induce charge confinement and decrease the nonradiative recombination. The interfaces between the emitting layer and charge transporting layer (CTL) are vulnerable to various defects that deteriorate the efficiency and stability of the PeLEDs. Therefore, the establishment of multifunctional CTLs that can improve not only charge transport but also critical factors that influence device performance, such as defect passivation, morphology/phase control, ion migration suppression, and light outcoupling efficiency, are highly required. Herein, the fundamental limitations of perovskites as emitters (i.e., defects, morphological and phase instability, high refractive index with poor outcoupling) and the recent developments with regard to multifunctional CTLs to compensate such limitations are summarized, and their device applications are also reviewed. Finally, based on the importance of multifunctional CTLs, the outlook and research prospects of multifunctional CTLs for the further improvement of PeLEDs are discussed.

17.
ACS Nano ; 14(10): 13246-13255, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32910640

RESUMEN

A series of poly(fluorene-co-phenylene)-based anionic conjugated polyelectrolytes (CPEs) are prepared with varying sizes of counterions (tetramethylammonium, tetraethylammonium, and tetrabutylammonium (TBA+)) and studied as a hole-transporting layer (HTL) for sky-blue-emissive perovskite light-emitting diodes (PeLEDs). Ionic CPE HTLs improve the wettability, compatibility, and nucleation of perovskite crystals at interfaces, enabling highly crystalline perovskite crystal growth with enhanced light-emitting properties. By incorporating the CPE HTLs containing bulky TBA+ counterions (MPS2-TBA) in place of PEDOT:PSS, the decreased phonon-electron coupling and increased exciton binding energy in perovskites are measured by temperature-dependent photoluminescence (PL) measurements. By increasing the size of counterions in CPE interlayers, the PL intensities and lifetimes of perovskite films increase. Through space-charge-limited current measurements, the lowest trap density is measured in the perovskite film on MPS2-TBA, emphasizing a critical role of larger counterions. Using density functional theory, MPS2-TBA is calculated to show the strongest adsorption affinity toward the interstitial defect of lead ions, explaining its pronounced interfacial defect passivation. The counterion size in CPE interlayers is interpreted as a main factor to determine the adsorption affinity onto perovskite, which determines the interacted area as noncovalent adsorption occurs. Finally, the sky-blue-emissive quasi-2D PeLED with MPS2-TBA shows the highest luminance efficiency (a peak EQE of 2.6% at 489 nm) and significantly improved spectral stability.

18.
Adv Mater ; 32(30): e2002333, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32567159

RESUMEN

A series of anionic conjugated polyelectrolytes (CPEs) is synthesized based on poly(fluorene-co-phenylene) by varying the side-chain ionic density from two to six per repeat units (MPS2-TMA, MPS4-TMA, and MPS6-TMA). The effect of MPS2, 4, 6-TMA as interlayers on top of a hole-extraction layer of poly(bis(4-phenyl)-2,4,6-trimethylphenylamine (PTAA) is investigated in inverted perovskite solar cells (PeSCs). Owing to the improved wettability of perovskites on hydrophobic PTAA with the CPEs, the PeSCs with CPE interlayers demonstrate a significantly enhanced device performance, with negligible device-to-device dependence relative to the reference PeSC without CPEs. By increasing the ionic density in the MPS-TMA interlayers, the wetting, interfacial defect passivation, and crystal growth of the perovskites are significantly improved without increasing the series resistance of the PeSCs. In particular, the open-circuit voltage increases from 1.06 V for the PeSC with MPS2-TMA to 1.11 V for the PeSC with MPS6-TMA. The trap densities of the PeSCs with MPS2,4,6-TMA are further analyzed using frequency-dependent capacitance measurements. Finally, a large-area (1 cm2 ) PeSC is successfully fabricated with MPS6-TMA, showing a power conversion efficiency of 18.38% with negligible hysteresis and a stable power output under light soaking for 60 s.

19.
ACS Appl Mater Interfaces ; 12(2): 2417-2423, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31856562

RESUMEN

Tin oxide (SnO2) is widely adopted as an electron transport layer in perovskite solar cells (PeSCs) because it has high electron mobility, excellent charge selective behavior owing to a large band gap of 3.76 eV, and low-temperature processibility. To achieve highly efficient SnO2-based PeSCs, it is necessary to control the oxygen vacancies in the SnO2 layer, since the electrical and optical properties vary depending on the oxidation state of Sn. This study demonstrates that the performance of PeSCs may be improved by using nitrogen-doped graphene oxide (NGO) as an oxidizing agent for SnO2. Since NGO changes the oxidation state of the Sn in SnO2 from Sn2+ to Sn4+, the oxygen vacancies in SnO2 can be reduced using NGO. Multiple devices are fabricated, and various techniques are used to assess their performance, including X-ray photoelectron spectroscopy, dark current analysis, and the dependence of the open-circuit voltage on light intensity. Compared with the average power conversion efficiency (PCE) of control devices, PeSCs with SnO2:NGO composite layers exhibit greater PCEs with less deviation. Therefore, the introduction of NGO in a SnO2 layer can be regarded as an effective method of controlling the oxidation state of SnO2 to improve the performance of PeSCs.

20.
Adv Sci (Weinh) ; 6(23): 1901603, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31832317

RESUMEN

Direct 3D printing technologies to produce 3D optoelectronic architectures have been explored extensively over the last several years. Although commercially available 3D printing techniques are useful for many applications, their limits in printable materials, printing resolutions, or processing temperatures are significant challenges for structural optoelectronics in achieving fully 3D-printed devices on 3D mechanical frames. Herein, the production of active optoelectronic devices with various form factors using a hybrid 3D printing process in ambient air is reported. This hybrid 3D printing system, which combines digital light processing for printing 3D mechanical architectures and a successive electrohydrodynamic jet for directly printing transparent pixels of organic light-emitting diodes at room temperature, can create high-resolution, transparent displays embedded inside arbitrarily shaped, 3D architectures in air. Also, the demonstration of a 3D-printed, eyeglass-type display for a wireless, augmented reality system is an example of another application. These results represent substantial progress in the development of next-generation, freeform optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA