Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Ginseng Res ; 47(4): 593-603, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397419

RESUMEN

Background: Korean Red Ginseng is a major source of bioactive substances such as ginsenosides. Efficacy of red ginseng extract (RGE), which contains not only saponins but also various non-saponins, has long been studied. In the water-soluble component-rich fraction of RGE (WS), a byproduct generated in the process of extracting saponins from the RGE, we identified previously unidentified molecules and confirmed their efficacy. Methods: The RGE was prepared and used to produce WS, whose components were isolated sequentially according to their water affinity. The new compounds from WS were fractionized and structurally analyzed using nuclear magnetic resonance spectroscopy. Physiological applicability was evaluated by verifying the antioxidant and anti-inflammatory efficacies of these compounds in vitro. Results: High-performance liquid chromatography confirmed that the obtained WS comprised 11 phenolic acid and flavonoid substances. Among four major compounds from fractions 1-4 (F1-4) of WS, two compounds from F3 and F4 were newly identified in red ginseng. The analysis results show that these compound molecules are member of the maltol-structure-based glucopyranose series, and F1 and F4 are particularly effective for decreasing oxidative stress levels and inhibiting nitric oxide secretion, interleukin (IL)-1ß and IL-6, and tumor necrosis factor-α. Conclusion: Our findings suggest that a few newly identified maltol derivatives, such as red ginseng-derived non-saponin in the WS, exhibit antioxidant and anti-inflammatory effects, making them viable candidates for application to pharmaceutical, cosmetic, and functional food materials.

2.
Antioxidants (Basel) ; 11(12)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36552705

RESUMEN

Alzheimer's disease is the most common type of dementia with cognitive impairment. Various plant-derived phenolics are known to alleviate cognitive impairment in Alzheimer's disease by radical scavenging and strengthening synaptic plasticity activities. Here, we examined the cognition-improving effect of Pinus densiflora Sieb. et Zucc. bark extract (PBE). We identified and quantified phenolics in the PBE using a UHPLC-Orbitrap mass spectrometer. To evaluate the cognition-enhancing effects of PBE, scopolamine-induced amnesic Sprague-Dawley (SD) rats (5 weeks old) and ion channel antagonist-induced organotypic hippocampal slices of SD rats (7 days old) were used. Twenty-three phenolics were tentatively identified in PBE, 10 of which were quantified. Oral administration of PBE to the scopolamine-induced SD rats improved cognitive impairment in behavioral tests. PBE-fed SD rats showed significantly improved antioxidant indices (superoxide dismutase and catalase activities, and malondialdehyde content) and reduced acetylcholinesterase activity in hippocampal lysate compared with the scopolamine group. PBE increased the long-term potentiation (LTP) induction and rescued LTP from blockades by the muscarinic cholinergic receptor antagonist (scopolamine) and N-methyl-D-aspartate channel antagonist (2-amino-5-phosphonovaleric acid) in the organotypic hippocampal slices. These results suggest that polyphenol-rich PBE is applicable as a cognition-improving agent due to its antioxidant properties and enhancement of LTP induction.

3.
BMC Genomics ; 23(1): 610, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35996099

RESUMEN

BACKGROUND: Nematodes are parasitic animals that cause over 100 billion US dollars loss in agricultural business. The whole-genomes of two Streptomyces strains, Streptomyces spectabilis KCTC9218T and Streptomyces sp. AN091965, were sequenced. Both strains produce spectinabilin, an antinematode drug. Its secondary metabolism was examined to aid the development of an efficient nematicidal drug-producing host strain. RESULTS: The whole-genome sequences of S. spectabilis KCTC9218T and Streptomyces sp. AN091965 were analyzed using PacBio and Illumina sequencing platforms, and assembled using hybrid methodology. The total contig lengths for KCTC9218T and AN091965 were 9.97 Mb and 9.84 Mb, respectively. A total of 8,374 and 8,054 protein-coding genes, as well as 39 and 45 secondary metabolite biosynthetic gene clusters were identified in KCTC9218T and AN091965, respectively. 18.4 ± 6.45 mg/L and 213.89 ± 21.30 mg/L of spectinabilin were produced by S. spectabilis KCTC9218T and Streptomyces sp. AN091965, respectively. Pine wilt disease caused by nematode was successfully prevented by lower concentration of spectinabilin injection than that of abamectin recommended by its manufacturer. Production of multiple antinematode drugs, including spectinabilin, streptorubin B, and undecylprodigiosin was observed in both strains using high-resolution liquid chromatography mass spectrometry (LC-MS) analysis. CONCLUSIONS: Whole-genome sequencing of spectinabilin-producing strains, coupled with bioinformatics and mass spectrometry analyses, revealed the production of multiple nematicidal drugs in the KCTC9218T and AN091965 strains. Especially, Streptomyces sp. AN091965 showed high production level of spectinabilin, and this study provides crucial information for the development of potential nematicidal drug producers.


Asunto(s)
Antinematodos , Metabolismo Secundario , Streptomyces , Animales , Antinematodos/farmacología , Familia de Multigenes , Nematodos/efectos de los fármacos , Análisis de Secuencia de ADN , Streptomyces/genética , Streptomyces/metabolismo , Secuenciación Completa del Genoma
4.
Front Plant Sci ; 13: 923163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800610

RESUMEN

Coumestrol (CMS) derivatives are unique compounds, which function as phytoalexins; they are derived from soybean roots, following abiotic and biotic stresses. As a phytoalexin, CMS forms a defense system that enables plants to maintain their viability. However, it is still challenging to achieve the mass production of phytoalexins, which exhibit pharmacological values, via plant breeding. Here, the synthesis of CMS derivatives from the seedling, plant, and adventitious root (AR) of Glycine max were investigated under artificial light, as well as via a chemical elicitor treatment. In the presence of constant light, as well as under treatment with methyl jasmonate, the CMS monoglucoside (coumestrin; CMSN) and malonyl CMSN (M-CMSN) contents of the AR culture (4 weeks) increased drastically. The two CMS derivatives, CMSN and M-CMSN, were obtained as a mixture of isomers, which were identified via nuclear magnetic resonance analysis. These derivatives were also observed in a soybean plant that was grown on artificial soil (AS; 5 weeks) and a Petri dish (9 days) although in considerably lesser quantities than those observed in the AR culture. Compared with the two other media (AS and the Petri dish), the AR culture achieved the superior synthesis of CMSN and M-CMSN within a relatively short cultivation period (<1 month) in laboratory-scale (3 L) and pilot-scale (1,000 L) bioreactors. The isoflavone content of AR under the constant light conditions was three-fold that under dark conditions. Significant quantities of malonyl daidzin and malonyl genistin were produced in the root of AS and the seedling of Petri dish, respectively. Flavonol glycosides were not produced in the AR culture under the dark and light conditions, as well as in AS under the dark condition. However, significant contents of kaempferol glycosides were produced in the leaves of AS and seedling of Petri dish, following the light treatment. Thus, we proposed that the established soybean AR-cultivation approach represented a better method for biosynthesizing phytoalexins, such as the CMS derivatives, as plant-derived functional materials.

5.
Org Lett ; 24(24): 4444-4448, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35699427

RESUMEN

Mohangamide A is a pseudo-dimeric nonribosomal peptide biosynthesized along with its monomer, WS9326A, and is expected to be formed by the head-to-tail cyclodimerization of linear WS9326A and another identical peptide chain with a different acyl side chain. In vitro experiments with the N-acetylcysteamine thioesters of the corresponding monomeric intermediates and thioesterase domains of Streptomyces sp. SNM55 and S. calvus showed that this cyclodimerization reaction is directed by the substrate structures and occurs only with both linear intermediates.


Asunto(s)
Streptomyces , Péptidos Cíclicos , Especificidad por Sustrato
6.
Mar Drugs ; 20(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35736203

RESUMEN

Two new lipo-decapeptides, namely taeanamides A and B (1 and 2), were discovered from the Gram-positive bacterium Streptomyces sp. AMD43, which was isolated from a mudflat sample from Anmyeondo, Korea. The exact molecular masses of 1 and 2 were revealed by high-resolution mass spectrometry, and the planar structures of 1 and 2 were elucidated using NMR spectroscopy. The absolute configurations of 1 and 2 were determined using a combined analysis of 1H-1H coupling constants and ROESY correlations, the advanced Marfey's method, and bioinformatics. The putative nonribosomal peptide synthetase pathway for the taeanamides was identified by analyzing the full genome sequence data of Streptomyces sp. AMD43. We also found that taeanamide A exhibited mild anti-tuberculosis bioactivity, whereas taeanamide B showed significant bioactivity against several cancer cell lines.


Asunto(s)
Streptomyces , Bacterias Grampositivas , Estructura Molecular , República de Corea , Streptomyces/química
7.
Front Microbiol ; 12: 725916, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512603

RESUMEN

With the constant emergence of multidrug-resistant gram-negative bacteria, interest in the development of new aminoglycoside (AG) antibiotics for clinical use has increased. The regioselective modification of AG scaffolds could be an efficient approach for the development of new antibiotics with improved therapeutic potency. We enzymatically synthesized three amikacin analogs containing structural modifications in the amino groups and evaluated their antibacterial activity and cytotoxicity. Among them, 6'-N-acyl-3″-N-methylated analogs showed improved antibacterial activity against the multidrug-resistant gram-negative bacteria tested, while exhibiting reduced in vitro nephrotoxicity compared to amikacin. This study demonstrated that the modifications of the 6'-amino group as well as the 3″-amino group have noteworthy advantages for circumventing the AG-resistance mechanism. The regiospecific enzymatic modification could be exploited to develop novel antibacterial agents with improved pharmacological potential.

8.
Angew Chem Int Ed Engl ; 60(36): 19766-19773, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33963654

RESUMEN

Systematic inactivation of nonribosomal peptide synthetase (NRPS) domains and translocation of the thioesterase (TE) domain revealed several unprecedented nonlinear NRPS assembly processes during the biosynthesis of the cyclodepsipeptide WS9326A in Streptomyces sp. SNM55. First, two sets of type ΙΙ TE (TEΙΙ)-like enzymes mediate the shuttling of activated amino acids between two sets of stand-alone adenylation (A)-thiolation (T) didomain modules and an "A-less" condensation (C)-T module with distinctive specificities and flexibilities. This was confirmed by the elucidation of the affinities of the A-T didomains for the TEΙΙs and its structure. Second, the C-T didomain module operates iteratively and independently from other modules in the same protein to catalyze two chain elongation cycles. Third, this biosynthetic pathway includes the first example of module skipping, where the interpolated C and T domains are required for chain transfer.


Asunto(s)
Depsipéptidos/biosíntesis , Péptido Sintasas/metabolismo , Depsipéptidos/química , Estructura Molecular , Streptomyces/química , Streptomyces/metabolismo
10.
J Nat Prod ; 84(2): 195-203, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33534559

RESUMEN

Separating the immunosuppressive activity of FK506 (1) from its neurotrophic activity is required to develop FK506 analogues as drugs for the treatment of neuronal diseases. Two new FK506 analogues, 9-deoxo-36,37-dihydro-prolylFK506 (2) and 9-deoxo-31-O-demethyl-36,37-dihydro-prolylFK506 (3) containing a proline moiety instead of the pipecolate ring at C-1 and modifications at the C-9/C-31 and C-36-C-37 positions, respectively, were biosynthesized, and their biological activities were evaluated. The proline substitution in 9-deoxo-36,37-dihydroFK506 and 9-deoxo-31-O-demethyl-36,37-dihydroFK506 reduced immunosuppressive activity by more than 120-fold, as previously observed. Compared with FK506 (1), 2 and 3 exhibited ∼1.2 × 105- and 2.2 × 105-fold reductions in immunosuppressive activity, respectively, whereas they retained almost identical neurite outgrowth activity. Furthermore, these compounds significantly increased the strength of synaptic transmission, confirming that replacement of the pipecolate ring with a proline is critical to reduce the strong immunosuppressive activity of FK506 (1) while enhancing its neurotrophic activity.


Asunto(s)
Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Tacrolimus/análogos & derivados , Animales , Células Cultivadas , Fermentación , Hipocampo/citología , Inmunosupresores , Ratones Endogámicos ICR , Estructura Molecular , Ácidos Pipecólicos , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...