Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39208048

RESUMEN

Phase-change memory (PCM) is a novel type of nonvolatile memory and is suitable for artificial neural synapses. This article investigates the Lagrange global exponential stability (LGES) of a class of PCNNs with mixed time delays. First, based on the conductivity characteristics of PCM, a piecewise equation is established to describe the electrical conductivity of PCM. By using the proposed piecewise equation to simulate the neural synapses, a novel PCNN with discrete and distributed time delays is proposed. Then, using comparative theory and fundamental inequalities, the LGES conditions based on the M -matrix are proposed in the sense of Filippov, and the exponential attractive set (EAS) is obtained based on M -matrix and external input. Moreover, the Lyapunov global exponential stability (GES) conditions of PCNNs without external input are obtained by using the inequality technique and eigenvalue theory, which is a form of M -matrix. Finally, two simulation examples are given to verify the validity of the obtained results.

2.
Front Plant Sci ; 13: 926715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845629

RESUMEN

Squalene synthase (SQS), squalene epoxidase (SE), and oxidosqualene cyclase (OSC) are encoding enzymes in downstream biosynthetic pathway of triterpenoid in plants, but the relationship between three genes and celastrol accumulation in Tripterygium wilfordii still remains unknown. Gene transformation system in plant can be used for studying gene function rapidly. However, there is no report on the application of cambial meristematic cells (CMCs) and dedifferentiated cells (DDCs) in genetic transformation systems. Our aim was to study the effects of individual overexpression of TwSQS, TwSE, and TwOSC on terpenoid accumulation and biosynthetic pathway related gene expression through CMCs and DDCs systems. Overexpression vectors of TwSQS, TwSE, and TwOSC were constructed by Gateway technology and transferred into CMCs and DDCs by gene gun. After overexpression, the content of celastrol was significantly increased in CMCs compared with the control group. However, there was no significant increment of celastrol in DDCs. Meanwhile, the relative expression levels of TwSQS, TwSE, TwOSC, and terpenoid biosynthetic pathway related genes were detected. The relative expression levels of TwSQS, TwSE, and TwOSC were increased compared with the control group in both CMCs and DDCs, while the pathway-related genes displayed different expression trends. Therefore, it was verified in T. wilfordii CMCs that overexpression of TwSQS, TwSE, and TwOSC increased celastrol accumulation and had different effects on the expression of related genes in terpenoid biosynthetic pathway, laying a foundation for further elucidating the downstream biosynthetic pathway of celastrol through T. wilfordii CMCs system.

3.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4380-4388, 2021 Sep.
Artículo en Chino | MEDLINE | ID: mdl-34581040

RESUMEN

Safflower(Carthamus tinctorius), a valuable traditional Chinese medicinal plant, has attracted much attention in recent years. This study established a stable tissue culture system of safflower and analyzed the chromatogram of its secondary metabolites, providing high-quality experimental materials for further research on natural products in safflower. The calluses were established from the safflower seeds germinated in a sterile environment, and then they were differentiated into the aseptic seedlings, or cultured to obtain suspension cells in liquid medium. The ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS), Progenesis QI, and principal component analysis(PCA) were used to detect and analyze the secondary metabolites in the suspension cells before and after induction with different elicitors(methyl jasmonate, silver nitrate, salicylic acid and yeast extract). A total of 23 secondary metabolites including flavonoids, phenylpropanoids, alkaloids, fatty acids and aromatic glycosides were detected in safflower suspension cells. In response to the four elicitors, 11 compounds showed increased or decreased relative content. The results indicate that different elicitors have various effects on the accumulation of secondary metabolites in safflower suspension cells, and yeast extract shows more obvious positive induction. Therefore, different elicitors may play a role in the expression of related genes in the biosynthetic pathway of specific secondary metabolites. The results facilitate the discovery of targeted elicitors and the large-scale production of valuable secondary metabolites in the future.


Asunto(s)
Carthamus tinctorius , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Flavonoides , Glicósidos , Espectrometría de Masas
4.
Int J Biol Macromol ; 185: 949-958, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34237366

RESUMEN

Acyclic terpenes, commonly found in plants, are of high physiological importance and commercial value, and their diversity was controlled by different terpene synthases. During the screen of sesquiterpene synthases from Tripterygium wilfordii, we observed that Ses-TwTPS1-1 and Ses-TwTPS2 promiscuously accepted GPP, FPP, and GGPP to produce corresponding terpene alcohols (linalool/nerolidol/geranyllinalool). The Ses-TwTPS1-2, Ses-TwTPS3, and Ses-TwTPS4 also showed unusual substrate promiscuity by catalyzing GGPP or GPP in addition to FPP as substrate. Furthermore, key residues for the generation of diterpene product, (E, E)-geranyllinalool, were screened depending on mutagenesis studies. The functional analysis of Ses-TwTPS1-1:V199I and Ses-TwTPS1-2:I199V showed that Val in 199 site assisted the produce of diterpene product geranyllinalool by enzyme mutation studies, which indicated that subtle differences away from the active site could alter the product outcome. Moreover, an engineered sesquiterpene high-yielding yeast that produced 162 mg/L nerolidol in shake flask conditions was constructed to quickly identify the function of sesquiterpene synthases in vivo and develop potential applications in microbial fermentation. Our functional characterization of acyclic sesquiterpene synthases will give some insights into the substrate promiscuity of diverse acyclic terpene synthases and provide key residues for expanding the product portfolio.


Asunto(s)
Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Tripterygium/enzimología , Transferasas Alquil y Aril/química , Dominio Catalítico , Cromatografía de Gases y Espectrometría de Masas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad por Sustrato , Terpenos/metabolismo , Tripterygium/genética
5.
Phytochemistry ; 190: 112868, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34273756

RESUMEN

Celastrol, a potent anticancer and anti-obesity drug, was first isolated from Tripterygium wilfordii Hook. f. and it is produced in small quantities in many members of the Celastraceae family. The heterologous reconstitution of celastrol biosynthesis could be a promising method for the efficient production of celastrol and natural and unnatural derivatives thereof, yet only part of the biosynthetic pathway is known. Here, we report a cytochrome P450 monooxygenase (TwCYP712K1) from T. wilfordii that performs the three-step oxidation of friedelin to polpunonic acid in the celastrol pathway. Heterologous expression of TwCYP712K1 showed that TwCYP712K1 catalyses not only the transformation of friedelin to polpunonic acid but also the oxidation of ß-amyrin or α-amyrin. The role of TwCYP712K1 in the biosynthesis of celastrol was further revealed via RNA interference. Some key residues of TwCYP712K1 were also screened by molecular docking and site-directed mutagenesis. Our results lay a solid foundation for further elucidating the biosynthesis of celastrol and related triterpenoids.


Asunto(s)
Triterpenos , Catálisis , Sistema Enzimático del Citocromo P-450/genética , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Tripterygium/genética
6.
Plant Commun ; 2(1): 100113, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33511345

RESUMEN

Panax notoginseng, a perennial herb of the genus Panax in the family Araliaceae, has played an important role in clinical treatment in China for thousands of years because of its extensive pharmacological effects. Here, we report a high-quality reference genome of P. notoginseng, with a genome size up to 2.66 Gb and a contig N50 of 1.12 Mb, produced with third-generation PacBio sequencing technology. This is the first chromosome-level genome assembly for the genus Panax. Through genome evolution analysis, we explored phylogenetic and whole-genome duplication events and examined their impact on saponin biosynthesis. We performed a detailed transcriptional analysis of P. notoginseng and explored gene-level mechanisms that regulate the formation of characteristic tubercles. Next, we studied the biosynthesis and regulation of saponins at temporal and spatial levels. We combined multi-omics data to identify genes that encode key enzymes in the P. notoginseng terpenoid biosynthetic pathway. Finally, we identified five glycosyltransferase genes whose products catalyzed the formation of different ginsenosides in P. notoginseng. The genetic information obtained in this study provides a resource for further exploration of the growth characteristics, cultivation, breeding, and saponin biosynthesis of P. notoginseng.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta , Ginsenósidos/biosíntesis , Ginsenósidos/genética , Panax notoginseng/genética , Panax notoginseng/metabolismo , China , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Extractos Vegetales/biosíntesis , Extractos Vegetales/genética , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Transcriptoma
8.
Zhongguo Zhong Yao Za Zhi ; 45(13): 3098-3103, 2020 Jul.
Artículo en Chino | MEDLINE | ID: mdl-32726017

RESUMEN

Based on the theory of Q-marker, the hairy root of Salvia miltiorrhiza and S. miltiorrhiza in many provinces were studied. The relative expressions of SmCPS, SmKSL and CYP76AH1 genes in hairy roots were detected by real-time fluorescence quantitative PCR and the contents of tanshinoneⅡ_A, cryptotanshinone, tanshinoneⅠ, 1,2-dihydrotanshinone, ferruginol and miltiradiene were detected by UPLC and GC-MS, respectively. Statistical analysis shows as fllows: in the hairy root of S. miltiorrhiza, the content of miltiradiene and ferruginol is positively correlated with the content of tanshinone compounds in the downstream, and the relative expression of important genes in the biosynthetic pathway of tanshinone can reflect the content of tanshinone compounds to a certain extent; in many provinces of S. miltiorrhiza, the content of ferruginol and tanshinone compounds can also be found that there is a positive correlation between the contents. Based on the biosynthetic pathway of tanshinone compounds, which is a special index component in S. miltiorrhiza, this study focused on the important relationship between the upstream gene, the middle intermediate compound and the downstream tanshinone compound content of the biosynthetic pathway, and explored the possible research ideas of improving the quality marker system of S. miltiorrhiza, and then provided the possible research ideas for understanding and studying the quality marker of traditional Chinese medicine from the biosynthetic pathway.


Asunto(s)
Salvia miltiorrhiza , Abietanos , Vías Biosintéticas , Raíces de Plantas
9.
Nat Commun ; 11(1): 971, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32080175

RESUMEN

Triptolide is a trace natural product of Tripterygium wilfordii. It has antitumor activities, particularly against pancreatic cancer cells. Identification of genes and elucidation of the biosynthetic pathway leading to triptolide are the prerequisite for heterologous bioproduction. Here, we report a reference-grade genome of T. wilfordii with a contig N50 of 4.36 Mb. We show that copy numbers of triptolide biosynthetic pathway genes are impacted by a recent whole-genome triplication event. We further integrate genomic, transcriptomic, and metabolomic data to map a gene-to-metabolite network. This leads to the identification of a cytochrome P450 (CYP728B70) that can catalyze oxidation of a methyl to the acid moiety of dehydroabietic acid in triptolide biosynthesis. We think the genomic resource and the candidate genes reported here set the foundation to fully reveal triptolide biosynthetic pathway and consequently the heterologous bioproduction.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Fenantrenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tripterygium/genética , Tripterygium/metabolismo , Abietanos/metabolismo , Antineoplásicos Fitogénicos/biosíntesis , Vías Biosintéticas/genética , Medicamentos Herbarios Chinos/metabolismo , Compuestos Epoxi/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Humanos , Ingeniería Metabólica , Metaboloma , Oxidación-Reducción , Filogenia , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
10.
Plant Methods ; 15: 129, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31719835

RESUMEN

BACKGROUND: Tripterygium wilfordii Hook. f. (T. wilfordii) is an important medicinal plant with anti-inflammatory, immunosuppressive and anti-tumor activities. The main bioactive ingredients are diterpenoids and triterpenoids, such as triptolide, triptophenolide and celastrol. However, the production of terpenoids from original plants, hairy roots and dedifferentiated cells (DDCs) are not satisfactory for clinical applications. To find a new way to further improve the production of terpenoids, we established a new culture system of cambial meristematic cells (CMCs) with stem cell-like properties, which had strong vigor and high efficiency to produce large amounts of terpenoids of T. wilfordii. RESULTS: CMCs of T. wilfordii were isolated and cultured for the first time. CMCs were characterized consistent with stem cell identities based on their physiological and molecular analysis, including morphology of CMCs, hypersensitivity to zeocin, thin cell wall and orthogonal partial least square-discriminant analysis, combination of transcriptional data analysis. After induction with methyl jasmonate (MJ), the maximal production of triptolide, celastrol and triptophenolide in CMCs was 312%, 400% and 327% higher than that of control group, respectively. As for medium, MJ-induced CMCs secreted 231% triptolide and 130% triptophenolide at the maximum level into medium higher than that of control group. Maximal celastrol production of induced CMCs medium was 48% lower than that of control group. Long-term induction significantly enhanced the production of terpenoids both in cells and medium. The reason for increasing the yield of terpenoids was that expression levels of 1-deoxy-d-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) and hydroxymethylglutaryl-CoA synthase (HMGS) were upregulated in CMCs after induction. CONCLUSIONS: For the first time, CMCs of T. wilfordii were isolated, cultured, characterized and applied. Considering the significant enrichment of terpenoids in CMCs of T. wilfordii, CMCs could provide an efficient and controllable platform for sustainable production of terpenoids, which can be a better choice than DDCs.

11.
J Exp Clin Cancer Res ; 38(1): 284, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266528

RESUMEN

In the original publication of this article [1], there are two errors.

12.
J Exp Clin Cancer Res ; 38(1): 184, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31053160

RESUMEN

BACKGROUND: Celastrol, a triterpene compound derived from the traditional Chinese medicine Tripterygium wilfordii, has been reported to possess potential antitumor activity towards various malignancies. However, the effect of celastrol on glioma cells and the underlying molecular mechanisms remain elusive. METHODS: Glioma cells, including the U251, U87-MG and C6 cell lines and an animal model were used. The effects of celastrol on cells were evaluated by flow cytometry, confocal microscopy, reactive oxygen species production assay and immunoblotting after treatment of celastrol. Fisher's exact test, a one-way ANOVA and the Mann-Whitney U-test were used to compare differences between groups. All data were analyzed using SPSS version 21.0 software. RESULTS: Here, we found that exposure to celastrol induced G2/M phase arrest and apoptosis. Celastrol increased the formation of autophagosomes, accumulation of LC3B and the expression of p62 protein. Celastrol-treated glioma cells exhibited decreased cell viability after the use of autophagy inhibitors. Additionally, autophagy and apoptosis caused by celastrol in glioma cells inhibited each other. Furthermore, celastrol induced JNK activation and ROS production and inhibited the activities of Akt and mTOR kinases. JNK and ROS inhibitors significantly attenuated celastrol-trigged apoptosis and autophagy, while Akt and mTOR inhibitors had opposite effects. CONCLUSIONS: In conclusion, our study revealed that celastrol caused G2/M phase arrest and trigged apoptosis and autophagy by activating ROS/JNK signaling and blocking the Akt/mTOR signaling pathway.


Asunto(s)
Glioma/tratamiento farmacológico , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Serina-Treonina Quinasas TOR/genética , Triterpenos/farmacología , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glioma/genética , Glioma/patología , Humanos , MAP Quinasa Quinasa 4/genética , Proteínas Asociadas a Microtúbulos/genética , Triterpenos Pentacíclicos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-myc/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
13.
New Phytol ; 223(2): 722-735, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30895623

RESUMEN

Celastrol is a promising bioactive compound isolated from Tripterygium wilfordii and has been shown to possess many encouraging preclinical applications. However, the celastrol biosynthetic pathway is poorly understood, especially the key oxidosqualene cyclase (OSC) enzyme responsible for cyclisation of the main scaffold. Here, we report on the isolation and characterisation of three OSCs from T. wilfordii: TwOSC1, TwOSC2 and TwOSC3. Both TwOSC1 and TwOSC3 were multiproduct friedelin synthases, while TwOSC2 was a ß-amyrin synthase. We further found that TwOSC1 and TwOSC3 were involved in the biosynthesis of celastrol and that their common product, friedelin, was a precursor of celastrol. We then reconstituted the biosynthetic pathway of friedelin in engineered yeast constructed by the CRISPR/Cas9 system, with protein modification and medium optimisation, leading to heterologous production of friedelin at 37.07 mg l-1 in a shake flask culture. Our study was the first to identify the genes responsible for biosynthesis of the main scaffold of celastrol and other triterpenes in T. wilfordii. As friedelin has been found in many plants, the results and approaches described here have laid a solid foundation for further explaining the biosynthesis of celastrol and related triterpenoids. Moreover, our results provide insights for metabolic engineering of friedelane-type triterpenes.


Asunto(s)
Vías Biosintéticas , Transferasas Intramoleculares/metabolismo , Tripterygium/metabolismo , Triterpenos/metabolismo , Acetatos/farmacología , Secuencia de Aminoácidos , Vías Biosintéticas/efectos de los fármacos , Ciclización , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transferasas Intramoleculares/química , Simulación del Acoplamiento Molecular , Mutagénesis/genética , Especificidad de Órganos/efectos de los fármacos , Oxilipinas/farmacología , Triterpenos Pentacíclicos , Filogenia , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Tripterygium/efectos de los fármacos , Tripterygium/genética , Triterpenos/química , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
14.
Biotechnol Lett ; 40(2): 419-425, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29270714

RESUMEN

OBJECTIVE: To examine the putative regulatory role of TwDXR in terpenoid biosynthesis and terpenoid biosynthetic pathway-related gene expression, through overexpression and RNA interference with TwDXR. RESULTS: We obtained 1410 and 454 bp TwDXR-specific fragments to construct overexpression and RNAi vectors. qRT-PCR was used to detect the expression of TwDXR and terpenoid biosynthesis pathway-related genes. The overexpression of TwDXR led to a 285% upregulation and the TwDXR RNAi led to a reduction to 26% of the control (empty vector-transformed cells) levels. However, pathway-related genes displayed different trends. When TwDXR was overexpressed, TwDXS expression decreased by 31% but increased to 198% when TwDXR expression was inhibited. The accumulation of terpenoids was also assayed. In the overexpression group, differences were not significant whereas the contents of triptolide and celastrol in the TwDXR RNAi samples were diminished by 27.3 and 24.0%, respectively. CONCLUSION: The feedback regulation of gene transcription and the accumulation of terpenoids in terpenoid biosynthesis in Tripterygium wilfordii were verified by TwDXR overexpression and RNAi experiments.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Proteínas de Plantas/metabolismo , Interferencia de ARN , Terpenos/metabolismo , Tripterygium/metabolismo , Isomerasas Aldosa-Cetosa/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Redes y Vías Metabólicas , Proteínas de Plantas/genética , Tripterygium/enzimología , Tripterygium/genética
15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(11): 3073-7, 2015 Nov.
Artículo en Chino | MEDLINE | ID: mdl-26978911

RESUMEN

Fourier transform near-infrared spectroscopy (FT-NIR) can reflect the overall molecular composition of microbial cells to identify different types of microorganisms. To establish an accurate, effective method about the differentiation and identification of Alicyclobacillus strains between different species, the present research performed the following studies by FT-NIR: (1) The FT-NIR spectra about seven type stains was clustered for data analysis. After preprocessing, reduction of data was performed by Principal Component Analysis (PCA) and Linear Discriminant Analysis(LDA), exploring the feasibility of differentiation and identification between different species, the result suggested that the PCA model can cluster the seven species of Alicyclobacillus strains correctly and the LDA model I can predict the unknown species with 100% accuracy. It evidenced that the method could identify different species of Alicyclobacillus strains preliminary. (2)In order to improve the robustness and practicability of the model, a total of 41 Alicyclobacillus strains including type and isolated strains were prepared for LDA model II, using the same methods as mentioned before. The result indicated that the LDA model validated by fifteen sample with 86.67% accuracy. It was more perfect and more comprehensive. As a result, the FT-NIR technology combined with chemometrics method can accurately and effectively identify Alicyclobacillus strains between different microbial species.


Asunto(s)
Alicyclobacillus/clasificación , Alicyclobacillus/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...