Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37834535

RESUMEN

This study experimentally confirmed the effect of TiO2 photocatalysts on the removal of indoor air pollutants. In the experiment, toluene, a representative indoor air pollutant, was removed using a coating agent containing TiO2 photocatalysts. Conditions proposed by the International Organization for Standardization (ISO) were applied mutatis mutandis, and a photoreactor for an experiment was manufactured. The experiment was divided into two categories. The first experiment was conducted under ISO conditions using the TiO2 photocatalyst coating agent. In the second experiment, the amount of ultraviolet-A (UV-A) light was varied depending on the lamp's service life, and the volume of the reactor was varied depending on the number of contaminants. The results showed that the TiO2 photocatalytic coating agent reduced the effect of toluene. This reduction effect can be increased as a primary function depending on the changes in the amount of UV-A light and reactor volume. However, because toluene is decomposed in this study, additional organic pollutants such as benzene and butadiene can be produced. Because these pollutants are decomposed by the TiO2 photocatalysts, the overall reduction performance may change. Nonetheless, TiO2 photocatalysts can be used to examine the effect of indoor pollutant reduction in indoor ventilation systems and building materials.

2.
Molecules ; 25(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906745

RESUMEN

In South Korea, the gradual increase in particulate matter generation has received significant attention from central and local governments. Exhaust gas, which contains nitrogen oxides (NOx), is one of the main sources of particulate matter. In this study, the reduction of NOx using a coating material mixed with a titanium dioxide (TiO2) photocatalyst was demonstrated. The NOx reduction performance of the TiO2 photocatalyst-infused coating was evaluated by applying the ISO 22197-1: 2007 standard. Subsequently, the performance was evaluated by changing the NO gas concentration and ultraviolet (UV)-A irradiance under standard experimental conditions. It was determined that NOx reduction can be achieved even if the NO gas concentration and UV-A irradiance are lower than those under the standard conditions when the TiO2 photocatalyst-infused coating was used. This study revealed that NOx reduction can be realized through TiO2 photocatalyst-infused coating in winter or cloudy days with a low solar altitude. It was also confirmed that compared with the UV-A irradiance, the NO gas concentration has a greater effect on the NOx reduction performance of the TiO2 photocatalyst-infused coating. These findings can be used to evaluate a variety of construction materials with TiO2 photocatalysts in the future.


Asunto(s)
Óxidos de Nitrógeno/química , Pintura/análisis , Titanio/química , Oxidación-Reducción , Material Particulado/análisis , Material Particulado/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...