Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
Environ Int ; 186: 108643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38615544

RESUMEN

Exposure to bisphenol S (BPS) is known to adversely affect neuronal development. As pivotal components of neuronal polarization, axons and dendrites are indispensable structures within neurons, crucial for the maintenance of nervous system function. Here, we investigated the impact of BPS exposure on axonal and dendritic development both in vivo and in vitro. Our results revealed that exposure to BPS during pregnancy and lactation led to a reduction in the complexity, density, and length of axons and dendrites in the prefrontal cortex (PFC) of offspring. Employing RNA sequencing technology to elucidate the underlying mechanisms of axonal and dendritic damage induced by BPS, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted a significant alteration in the oxidative phosphorylation (OXPHOS) pathway, essential for mitochondrial function. Subsequent experiments demonstrate BPS-induced impairment in mitochondrial function, including damaged morphology, decreased adenosine triphosphate (ATP) and superoxide dismutase (SOD) levels, and increased reactive oxygen species and malondialdehyde (MDA). These alterations coincided with the downregulated expression of OXPHOS pathway-related genes (ATP6V1B1, ATP5K, NDUFC1, NDUFC2, NDUFA3, COX6B1) and Myosin 19 (Myo19). Notably, Myo19 overexpression restored the BPS-induced mitochondrial dysfunction by alleviating the inhibition of OXPHOS pathway. Consequently, this amelioration was associated with a reduction in BPS-induced axonal and dendritic injury observed in cultured neurons of the PFC.


Asunto(s)
Axones , Dendritas , Mitocondrias , Fosforilación Oxidativa , Fenoles , Sulfonas , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fenoles/toxicidad , Dendritas/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Femenino , Sulfonas/toxicidad , Axones/efectos de los fármacos , Embarazo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratones
2.
Emerg Microbes Infect ; 13(1): 2348505, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38686553

RESUMEN

China, with the third largest share of global tuberculosis cases, faces a substantial challenge in its healthcare system as a result of the high burden of multidrug-resistant and rifampicin-resistant tuberculosis (MDR/RR-TB). This study employs a genomic epidemiological approach to assess recent tuberculosis transmissions between individuals, identifying potential risk factors and discerning the role of transmitted resistant isolates in the emergence of drug-resistant tuberculosis in China. We conducted a population-based retrospective study on 5052 Mycobacterium tuberculosis (MTB) isolates from 70 surveillance sites using whole genome sequencing (WGS). Minimum spanning tree analysis identified resistance mutations, while epidemiological data analysis pinpointed transmission risk factors. Of the 5052 isolates, 23% (1160) formed 452 genomic clusters, with 85.6% (387) of the transmissions occurring within the same counties. Individuals with younger age, larger family size, new cases, smear positive, and MDR/RR were at higher odds for recent transmission, while higher education (university and above) and occupation as a non-physical workers emerged as protective factors. At least 61.4% (251/409) of MDR/RR-TB were likely a result of recent transmission of MDR/RR isolates, with previous treatment (crude OR = 2.77), smear-positive (cOR = 2.07) and larger family population (cOR = 1.13) established as risk factors. Our findings highlight that local transmission remains the predominant form of TB transmission in China. Correspondingly, drug-resistant tuberculosis is primarily driven by the transmission of resistant tuberculosis isolates. Targeted interventions for high-risk populations to interrupt transmission within the country will likely provide an opportunity to reduce the prevalence of both tuberculosis and drug-resistant tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Secuenciación Completa del Genoma , Humanos , China/epidemiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/clasificación , Masculino , Adulto , Femenino , Persona de Mediana Edad , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/transmisión , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Estudios Transversales , Estudios Retrospectivos , Adulto Joven , Factores de Riesgo , Adolescente , Anciano , Rifampin/farmacología , Antituberculosos/farmacología , Genoma Bacteriano , Farmacorresistencia Bacteriana Múltiple
3.
Microorganisms ; 12(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674714

RESUMEN

Mycobacterial membrane proteins play a pivotal role in the bacterial invasion of host cells; however, the precise mechanisms underlying certain membrane proteins remain elusive. Mycolicibacterium smegmatis (Ms) msmeg5257 is a hemolysin III family protein that is homologous to Mycobacterium tuberculosis (Mtb) Rv1085c, but it has an unclear function in growth. To address this issue, we utilized the CRISPR/Cas9 gene editor to construct Δmsmeg5257 strains and combined RNA transcription and LC-MS/MS protein profiling to determine the functional role of msmeg5257 in Ms growth. The correlative analysis showed that the deletion of msmeg5257 inhibits ABC transporters in the cytomembrane and inhibits the biosynthesis of amino acids in the cell wall. Corresponding to these results, we confirmed that MSMEG5257 localizes in the cytomembrane via subcellular fractionation and also plays a role in facilitating the transport of iron ions in environments with low iron levels. Our data provide insights that msmeg5257 plays a role in maintaining Ms metabolic homeostasis, and the deletion of msmeg5257 significantly impacts the growth rate of Ms. Furthermore, msmeg5257, a promising drug target, offers a direction for the development of novel therapeutic strategies against mycobacterial diseases.

4.
Plants (Basel) ; 13(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38498546

RESUMEN

Aluminum toxicity poses a significant constraint on crop production in acidic soils. While phytohormones are recognized for their pivotal role in mediating plant responses to aluminum stress, the specific involvement of gibberellin (GA) in regulating aluminum tolerance remains unexplored. In this study, we demonstrate that external GA exacerbates the inhibitory impact of aluminum stress on root growth of rice seedlings, concurrently promoting reactive oxygen species (ROS) accumulation. Furthermore, rice plants overexpressing the GA synthesis gene SD1 exhibit enhanced sensitivity to aluminum stress. In contrast, the slr1 gain-of-function mutant, characterized by impeded GA signaling, displays enhanced tolerance to aluminum stress, suggesting the negative regulatory role of GA in rice resistance to aluminum-induced toxicity. We also reveal that GA application suppresses the expression of crucial aluminum tolerance genes in rice, including Al resistance transcription factor 1 (ART1), Nramp aluminum transporter 1 (OsNramp4), and Sensitive to Aluminum 1 (SAL1). Conversely, the slr1 mutant exhibits up-regulated expression of these genes compared to the wild type. In summary, our results shed light on the inhibitory effect of GA in rice resistance to aluminum stress, contributing to a theoretical foundation for unraveling the intricate mechanisms of plant hormones in regulating aluminum tolerance.

5.
Eco Environ Health ; 3(1): 107-115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38445214

RESUMEN

Chemical exposure and local hypoxia caused by mask-wearing may result in skin physiology changes. The effects of methylparaben (MeP), a commonly used preservative in personal care products, and hypoxia on skin health were investigated by HaCaT cell and ICR mouse experiments. MeP exposure resulted in lipid peroxidation and interfered with cellular glutathione metabolism, while hypoxia treatment disturbed phenylalanine, tyrosine, and tryptophan biosynthesis pathways and energy metabolism to respond to oxidative stress. A hypoxic environment increased the perturbation of MeP on the purine metabolism in HaCaT cells, resulting in increased expression of proinflammatory cytokines. The synergistic effects were further validated in a mouse model with MeP dermal exposure and "mask-wearing" treatment. CAT, PPARG, and MMP2 were identified as possible key gene targets associated with skin health risks posed by MeP and hypoxia. Network toxicity analysis suggested a synergistic effect, indicating the risk of skin inflammation and skin barrier aging.

6.
Proc Natl Acad Sci U S A ; 121(14): e2317574121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530899

RESUMEN

Fine particulate matter (PM2.5) is globally recognized for its adverse implications on human health. Yet, remain limited the individual contribution of particular PM2.5 components to its toxicity, especially considering regional disparities. Moreover, prevention solutions for PM2.5-associated health effects are scarce. In the present study, we comprehensively characterized and compared the primary PM2.5 constituents and their altered metabolites from two locations: Taiyuan and Guangzhou. Analysis of year-long PM2.5 samples revealed 84 major components, encompassing organic carbon, elemental carbon, ions, metals, and organic chemicals. PM2.5 from Taiyuan exhibited higher contamination, associated health risks, dithiothreitol activity, and cytotoxicities than Guangzhou's counterpart. Applying metabolomics, BEAS-2B lung cells exposed to PM2.5 from both cities were screened for significant alterations. A correlation analysis revealed the metabolites altered by PM2.5 and the critical toxic PM2.5 components in both regions. Among the PM2.5-down-regulated metabolites, phosphocholine emerged as a promising intervention for PM2.5 cytotoxicities. Its supplementation effectively attenuated PM2.5-induced energy metabolism disorder and cell death via activating fatty acid oxidation and inhibiting Phospho1 expression. The highlighted toxic chemicals displayed combined toxicities, potentially counteracted by phosphocholine. Our study offered a promising functional metabolite to alleviate PM2.5-induced cellular disorder and provided insights into the geo-based variability in toxic PM2.5 components.


Asunto(s)
Contaminantes Atmosféricos , Enfermedades Mitocondriales , Humanos , Contaminantes Atmosféricos/análisis , Fosforilcolina , Material Particulado/análisis , Pulmón , Carbono/análisis , Monitoreo del Ambiente
7.
Environ Pollut ; 347: 123740, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462198

RESUMEN

Tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a halogen-containing phosphorus flame retardant, is widely used and has been shown to possess health risks to humans. The sustained release of artificial nanomaterials into the environment increases the toxicological risks of their coexisting pollutants. Nanomaterials may seriously change the environmental behavior and fate of pollutants. In this study, we investigated this combined toxicity and the potential mechanisms of toxicity of TDCPP and titanium dioxide nanoparticles (TiO2 NPs) aggregates on human neuroblastoma SH-SY5Y cells. TDCPP and TiO2 NPs aggregates were exposed in various concentration combinations, revealing that TDCPP (25 µg/mL) reduced cell viability, while synergistic exposure to TiO2 NPs aggregates exacerbated cytotoxicity. This combined exposure also disrupted mitochondrial function, leading to dysregulation in the expression of mitochondrial fission proteins (DRP1 and FIS1) and fusion proteins (OPA1 and MFN1). Consequently, excessive mitochondrial fission occurred, facilitating the translocation of cytochrome C from mitochondria to activate apoptotic signaling pathways. Furthermore, exposure of the combination of TDCPP and TiO2 NPs aggregates activated upstream mitochondrial autophagy but disrupted downstream Parkin recruitment to damaged mitochondria, preventing autophagosome-lysosome fusion and thereby disrupting mitochondrial autophagy. Altogether, our findings suggest that TDCPP and TiO2 NPs aggregates may stimulate apoptosis in neuronal SH-SY5Y cells by inducing mitochondrial hyperfission and inhibiting mitochondrial autophagy.


Asunto(s)
Contaminantes Ambientales , Neuroblastoma , Humanos , Mitofagia , Neuroblastoma/metabolismo , Dinámicas Mitocondriales , Apoptosis
8.
Plant Cell Rep ; 43(3): 78, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393406

RESUMEN

KEY MESSAGE: This study provided important insights into the complex epigenetic regulatory of H3K9ac-modified genes involved in the jasmonic acid signaling and phenylpropanoid biosynthesis pathways of rice in response to Spodoptera frugiperda infestation. Physiological and molecular mechanisms underlying plant responses to insect herbivores have been well studied, while epigenetic modifications such as histone acetylation and their potential regulation at the genomic level of hidden genes remain largely unknown. Histone 3 lysine 9 acetylation (H3K9ac) is an epigenetic marker widely distributed in plants that can activate gene transcription. In this study, we provided the genome-wide profiles of H3K9ac in rice (Oryza sativa) infested by fall armyworm (Spodoptera frugiperda, FAW) using CUT&Tag-seq and RNA-seq. There were 3269 and 4609 up-regulated genes identified in plants infested by FAW larvae for 3 h and 12 h, respectively, which were mainly enriched in alpha-linolenic acid and phenylpropanoid pathways according to transcriptomic analysis. In addition, CUT&Tag-seq analysis revealed increased H3K9ac in FAW-infested plants, and there were 422 and 543 up-regulated genes enriched with H3K9ac observed at 3 h and 12 h after FAW feeding, respectively. Genes with increased H3K9ac were mainly enriched in the transcription start site (TSS), suggesting that H3K9ac is related to gene transcription. Integrative analysis of both RNA-seq and CUT&Tag-seq data showed that up-expressed genes with H3K9ac enrichment were mainly involved in the jasmonic acid (JA) and phenylpropanoid pathways. Particularly, two spermidine hydroxycinnamoyl transferase genes SHT1 and SHT2 involved in phenolamide biosynthesis were highly modified by H3K9ac in FAW-infested plants. Furthermore, the Ossht1 and Ossht2 transgenic lines exhibited decreased resistance against FAW larvae. Our findings suggest that rice responds to insect herbivory via H3K9ac epigenetic regulation in the JA signaling and phenolamide biosynthesis pathways.


Asunto(s)
Ciclopentanos , Oryza , Oxilipinas , Animales , Spodoptera/genética , Oryza/metabolismo , Histonas/metabolismo , Epigénesis Genética , Larva/genética
9.
Se Pu ; 42(2): 120-130, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38374592

RESUMEN

Environmental factors, such as environmental pollutants, behaviors, and lifestyles, are the leading causes of chronic noncommunicable diseases. Estimates indicate that approximately 50% of all deaths worldwide can be attributed to environmental factors. The exposome is defined as the totality of human environmental (i.e., all nongenetic) exposures from conception, including general external exposure (e.g., climate, education, and urban environment), specific external exposure (e.g., pollution, physical activity, and diet), and internal exposure (e.g., metabolic factors, oxidative stress, inflammation, and protein modification). As a new paradigm, this concept aims to comprehensively understand the link between human health and environmental factors. Therefore, a comprehensive measurement of the exposome, including accurate and reliable measurements of exposure to the external environment and a wide range of biological responses to the internal environment, is of great significance. The measurement of the general external exposome depends on advances in environmental sensors, personal-sensing technologies, and geographical information systems. The determination of exogenous chemicals to which individuals are exposed and endogenous chemicals that are produced or modified by external stressors relies on improvements in methodology and the development of instrumental approaches, including colorimetric, chromatographic, spectral, and mass-spectrometric methods. This article reviews the research strategies for chemical exposomes and summarizes existing exposome-measurement methods, focusing on mass spectrometry (MS)-based methods. The top-down and bottom-up approaches are commonly used in exposome studies. The bottom-up approach focuses on the identification of chemicals in the external environment (e.g., soil, water, diet, and air), whereas the top-down approach focuses on the evaluation of endogenous chemicals and biological processes in biological samples (e.g., blood, urine, and serum). Low- and high-resolution MS (LRMS and HRMS, respectively) have become the most popular methods for the direct measurement of exogenous and endogenous chemicals owing to their superior sensitivity, specificity, and dynamic range. LRMS has been widely applied in the targeted analysis of expected chemicals, whereas HRMS is a promising technique for the suspect and unknown screening of unexpected chemicals. The development of MS-based multiomics, including proteomics, metabolomics, epigenomics, and spatial omics, provides new opportunities to understand the effects of environmental exposure on human health. Metabolomics involves the sum of all low-molecular-weight metabolites in a living system. Nontargeted metabolomics can measure both endogenous and exogenous chemicals, which would directly link exposure to biological effects, internal dose, and disease pathobiology, whereas proteomics could play an important role in predicting potential adverse health outcomes and uncovering molecular mechanisms. MS imaging (MSI) is an emerging technique that provides unlabeled in-depth measurements of endogenous and exogenous molecules directly from tissue and cell sections without changing their spatial information. MSI-based spatial omics, which has been widely applied in biomarker discovery for clinical diagnosis, as well as drug and pollutant monitoring, is expected to become an effective method for exposome measurement. Integrating these response measurements from metabolomics, proteomics, spatial omics, and epigenomics will enable the generation of new hypotheses to discover the etiology of diseases caused by chemical exposure. Finally, we highlight the major challenges in achieving chemical exposome measurements.


Asunto(s)
Contaminantes Ambientales , Exposoma , Humanos , Multiómica , Exposición a Riesgos Ambientales/efectos adversos , Espectrometría de Masas , Contaminantes Ambientales/toxicidad
10.
Int J Gen Med ; 17: 579-595, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374816

RESUMEN

Purpose: This study aimed to improve cancer-related fatigue (CRF) and health outcomes of colorectal cancer patients by understanding the status quo of CRF, exploring the relations of coping, anxiety symptoms, depressive symptoms, body image perception and CRF, and also identifying the factors affecting CRF based on a generalized linear modeling approach. Patients and Methods: An exploratory cross-sectional study was conducted on 370 colorectal cancer patients at two hospitals in Anhui Province, China, from July 2020 to February 2021. The data were collected by using general information questionnaire, cancer fatigue scale, simplified coping style questionnaire, generalized anxiety disorder-7 scale, patient health questionnaire-9, and body image scale. Descriptive statistics, t-tests, one-way analysis of variance, Pearson correlation analyses, and generalized linear model analyses were applied to analyze the data. Results: The average CRF score of the patients was 21.612 (SD=6.160), with a prevalence rate of 69.4% for clinically relevant fatigue. The generalized linear model revealed that: In step 1, gender (female) (B=1.799, Waldχ2=7.506, p=0.006), per capita monthly income (1001-3000 RMB) (B=-1.673, Waldχ2=5.536, p=0.019) and treatment modalities (chemotherapy+others) (B=2.425, Waldχ2=8.211, p=0.004) were related to CRF. In step 2, depressive symptoms (B=1.223, Waldχ2=129.019, p<0.001) and negative coping strategies (B=0.215, Waldχ2=11.347, p=0.001) exhibited significant positive correlations with CRF, positive coping strategies (B=-0.319, Waldχ2=59.175, p<0.001) showed significant negative correlations with CRF; While anxiety symptoms (B=0.162, Waldχ2=1.840, p=0.175) and body image perception (B=0.013, Waldχ2=0.048, p=0.826) had no correlations with CRF. Conclusion: The prevalence of CRF was relatively high among colorectal cancer patients. Coping and depressive symptoms were the modifiable influencing factors of CRF. Tailored interventions dedicated to promoting positive coping behavior, diminishing negative coping behavior and reducing depressive symptoms may improve the CRF of patients with colorectal cancer. Healthcare providers working with these patients should receive corresponding education and training in these complementary treatments. Additionally, when developing non-pharmacological interventions, appropriate consideration of the patients' gender, income condition and the type of anticancer treatment is also necessary.

11.
Nat Commun ; 15(1): 955, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302463

RESUMEN

Ageing exhibits common and distinct features in various tissues, making it critical to decipher the tissue-specific ageing mechanisms. MiRNAs are essential regulators in ageing and are recently highlighted as a class of intercellular messengers. However, little is known about the tissue-specific transcriptomic changes of miRNAs during ageing. C. elegans is a well-established model organism in ageing research. Here, we profile the age-dependent miRNAomic changes in five isolated worm tissues. Besides the diverse ageing-regulated miRNA expression across tissues, we discover numerous miRNAs in the tissues without their transcription. We further profile miRNAs in the extracellular vesicles and find that worm miRNAs undergo inter-tissue trafficking via these vesicles in an age-dependent manner. Using these datasets, we uncover the interaction between body wall muscle-derived mir-1 and DAF-16/FOXO in the intestine, suggesting mir-1 as a messenger in inter-tissue signalling. Taken together, we systematically investigate worm miRNAs in the somatic tissues and extracellular vesicles during ageing, providing a valuable resource to study tissue-autonomous and nonautonomous functions of miRNAs in ageing.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Envejecimiento/genética , Intestinos , MicroARNs/metabolismo , Longevidad/genética
12.
Plant Cell Environ ; 47(5): 1452-1470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38233741

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that play a vital role in plant responses to abiotic and biotic stresses. Recently, it has been discovered that some primary miRNAs (pri-miRNAs) encode regulatory short peptides called miPEPs. However, the presence of miPEPs in rice, and their functions in response to abiotic stresses, particularly stress induced by heavy metals, remain poorly understood. Here, we identified a functional small peptide (miPEP156e) encoded by pri-miR156e that regulates the expression of miR156 and its target SPL genes, thereby affecting miR156-mediated cadmium (Cd) tolerance in rice. Overexpression of miPEP156e led to decreased uptake and accumulation of Cd and reactive oxygen species (ROS) levels in plants under Cd stress, resulting in improved rice Cd tolerance, as observed in miR156-overexpressing lines. Conversely, miPEP156e mutants displayed sensitivity to Cd stress due to the elevated accumulation of Cd and ROS. Transcriptome analysis further revealed that miPEP156e improved rice Cd tolerance by modulating Cd transporter genes and ROS scavenging genes. Our study provides insights into the regulatory mechanism of miPEP156e in rice response to Cd stress and demonstrates the potential of miPEPs as an effective tool for improving crop abiotic stress tolerance.


Asunto(s)
MicroARNs , Oryza , MicroARNs/genética , MicroARNs/metabolismo , Cadmio/metabolismo , Oryza/fisiología , Especies Reactivas de Oxígeno/metabolismo , Péptidos/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Ecotoxicol Environ Saf ; 271: 115991, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237395

RESUMEN

Heavy metal toxicity is a significant global health concern, with particular attention given to lead (Pb) exposure due to its adverse effects on cognitive development, especially in children exposed to low concentrations. While Pb neurotoxicity has been extensively studied, the analysis and molecular mechanisms underlying the transgenerational effects of Pb exposure-induced neurotoxicity remain poorly understood. In this study, we utilized Drosophila, a powerful developmental animal model, to investigate this phenomenon. Our findings demonstrated that Pb exposure during the developmental stage had a profound effect on the neurodevelopment of F0 fruit flies. Specifically, we observed a loss of correlation between the terminal motor area and muscle fiber area, along with an increased frequency of the ß-lobe midline crossing phenotype in mushroom bodies. Western blot analysis indicated altered expression levels of synaptic vesicle proteins, with a decrease in Synapsin (SYN) and an increase in Bruchpilot (BRP) expression, suggesting changes in synaptic vesicle release sites. These findings were corroborated by electrophysiological data, showing an increase in the amplitude of evoked excitatory junctional potential (EJP) and an increase in the frequency of spontaneous excitatory junctional potential (mEJP) following Pb exposure. Importantly, our results further confirmed that the developmental neurotoxicity resulting from grandparental Pb exposure exhibited a transgenerational effect. The F3 offspring displayed neurodevelopmental defects, synaptic function abnormalities, and repetitive behavior despite lacking direct Pb exposure. Our MeDIP-seq analysis further revealed significant alterations in DNA methylation levels in several neurodevelopmental associated genes (eagle, happyhour, neuroglian, bazooka, and spinophilin) in the F3 offspring exposed to Pb. These findings suggest that DNA methylation modifications may underlie the inheritance of acquired phenotypic traits resulting from environmental Pb exposure.


Asunto(s)
Drosophila melanogaster , Síndromes de Neurotoxicidad , Animales , Niño , Humanos , Plomo/metabolismo , Metilación de ADN , Síndromes de Neurotoxicidad/genética , Genoma
14.
J Glob Antimicrob Resist ; 36: 230-236, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072239

RESUMEN

OBJECTIVES: The characteristic and performance of Broth microdilution (BMD) plates for drug susceptibility of Mycobacterium tuberculosis have not been systematically evaluated in China. This study was designed to review the key information and assess the performance of BMD plates by analysis of proficiency testing results. METHODS: We retrospectively analysed the proficiency testing results of phenotypic drug susceptibility testing (PT-DST) of 45 laboratories using BMD plates in China in 2021. Critical information, such as drug layout, concentration range of each drug, plate storage conditions and duration, operating procedures, and interpretation criteria for binary results were compared. The performance was also analysed. RESULTS: Eight types of BMD plates produced by four manufactures were reported. The drug layout, number of drugs on plates, and concentration range varied a lot between different plates. The total sensitivity and specificity of BMD plates for drug susceptibility of Mycobacterium tuberculosis to ten drugs (isoniazid (INH), rifampin (RIF), kanamycin (KAM), amikacin (AM), levofloxacin (LFX), moxifloxacin (MFX), bedaquiline (BDQ), linezolid (LZD), clofazimine (CFZ), and delamanid (DLM)) were 93.9% (95% CI 92.-94.9) and 99.1% (95% CI 98.8-99.3), respectively. The lowest sensitivity was 84.8% (95% CI 80.3-88.4) for LFX and 86.4% (95% CI 82.5-89.6) for MFX, or 87.5% (95% CI 84.2-90.2) for Y1 plate and 87.9% (95% CI 83.5-91.1) for T plate. The lowest specificity was 94.4% (95% CI 91.4-96.4) for DLM, or 97.9% (95% CI 96.8-98.7) for B3 plate. CONCLUSION: Commercial BMD plates in China showed varied drug layouts and operational procedures, indicating the urgency of standardization. The lower performance for some drugs showed the low quality of the plates utilized or lack of proficiency of lab staffs in operating and interpreting results.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacología , Pruebas de Sensibilidad Microbiana , Estudios Retrospectivos , Rifampin
15.
Sci China Life Sci ; 67(1): 83-95, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37721637

RESUMEN

SARS-CoV-2 continues to threaten human society by generating novel variants via mutation and recombination. The high number of mutations that appeared in emerging variants not only enhanced their immune-escaping ability but also made it difficult to predict the pathogenicity and virulence based on viral nucleotide sequences. Molecular markers for evaluating the pathogenicity of new variants are therefore needed. By comparing host responses to wild-type and variants with attenuated pathogenicity at proteome and metabolome levels, six key molecules on the polyamine biosynthesis pathway including putrescine, SAM, dc-SAM, ODC1, SAMS, and SAMDC were found to be differentially upregulated and associated with pathogenicity of variants. To validate our discovery, human airway organoids were subsequently used which recapitulates SARS-CoV-2 replication in the airway epithelial cells of COVID-19 patients. Using ODC1 as a proof-of-concept, differential activation of polyamine biosynthesis was found to be modulated by the renin-angiotensin system (RAS) and positively associated with ACE2 activity. Further experiments demonstrated that ODC1 expression could be differentially activated upon a panel of SARS-CoV-2 variants of concern (VOCs) and was found to be correlated with each VOCs' pathogenic properties. Particularly, the presented study revealed the discriminative ability of key molecules on polyamine biosynthesis as a predictive marker for virulence evaluation and assessment of SARS-CoV-2 variants in cell or organoid models. Our work, therefore, presented a practical strategy that could be potentially applied as an evaluation tool for the pathogenicity of current and emerging SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Multiómica , Putrescina
16.
Acta Pharmacol Sin ; 45(2): 378-390, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798352

RESUMEN

Reinforced cellular responses to endoplasmic reticulum (ER) stress are caused by a variety of pathological conditions including cancers. Human rhomboid family-1 protein (RHBDF1), a multiple transmembrane protein located mainly on the ER, has been shown to promote cancer development, while the binding immunoglobulin protein (BiP) is a key regulator of cellular unfolded protein response (UPR) for the maintenance of ER protein homeostasis. In this study, we investigated the role of RHBDF1 in maintaining ER protein homeostasis in breast cancer cells. We showed that deleting or silencing RHBDF1 in breast cancer cell lines MCF-7 and MDA-MB-231 caused marked aggregation of unfolded proteins in proximity to the ER. We demonstrated that RHBDF1 directly interacted with BiP, and this interaction had a stabilizing effect on the BiP protein. Based on the primary structural motifs of RHBDF1 involved in BiP binding, we found a pentapeptide (PE5) targeted BiP and inhibited BiP ATPase activity. SPR assay revealed a binding affinity of PE5 toward BiP (Kd = 57.7 µM). PE5 (50, 100, 200 µM) dose-dependently promoted ER protein aggregation and ER stress-mediated cell apoptosis in MCF-7 and MDA-MB-231 cells. In mouse 4T1 breast cancer xenograft model, injection of PE5 (10 mg/kg, s.c., every 2 days for 2 weeks) significantly inhibited the tumor growth with markedly increased ER stress and apoptosis-related proteins in tumor tissues. Our results suggest that the ability of RHBDF1 to maintain BiP protein stability is critical to ER protein homeostasis in breast cancer cells, and that the pentapeptide PE5 may serve as a scaffold for the development of a new class of anti-BiP inhibitors.


Asunto(s)
Neoplasias de la Mama , Proteínas Portadoras , Humanos , Animales , Ratones , Femenino , Proteínas Portadoras/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Apoptosis , Respuesta de Proteína Desplegada , Proteínas Reguladoras de la Apoptosis/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo
17.
Plants (Basel) ; 12(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38068635

RESUMEN

The rhizosphere harbors abundant plant growth-promoting rhizobacteria (PGPR) that are vital for plant health. In this study, we screened growth-promoting bacteria from tomato rhizosphere soil, verified their functions, and constructed the optimal combination of growth-promoting bacteria for promoting tomato growth. Furthermore, the effects of these bacteria on various physiological and biochemical parameters of tomato plants were evaluated. A total of 36 strains of rhizobacteria were isolated from tomato rhizosphere soil and their abilities to produce indole-3-acetic acid (IAA), solubilize phosphate and iron carriers were assessed. The bacterial strains with the highest capacities for IAA production (R62, R317), phosphate solubilization (R41, R219), and siderophore production (R25, R325) were selected to form three bacterial combinations: R62 + R219 + R317 + R325 (T1), R62 + R325 (T5), and R317 + R325 (T8). Fifteen days after inoculation, all three combinations showed a stimulatory effect on seedling growth compared to the un-inoculated control. Inoculation with T1, T5 and T8 increased the seedling vigor index by 173.7%, 204.1%, and 168.7%, respectively. Compared to the un-inoculated control, the T1 combination increased the activities of polyphenol oxidase, peroxidase, and the net photosynthetic rate by 132.7%, 18.7%, 58.5%, and upregulated the relative expression levels of the photosynthetic assimilation-related genes RbcL, RbcS, FBPase and FDA by 22.2-, 6.6-, 1.95-, and 2.0-fold, respectively. Our findings provide a potential for constructing rhizobacterial combinations of different functional groups for improving crop growth.

18.
Int J Nanomedicine ; 18: 7183-7204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076727

RESUMEN

The increasing use of titanium dioxide nanoparticles (TiO2 NPs) across various fields has led to a growing concern regarding their environmental contamination and inevitable human exposure. Consequently, significant research efforts have been directed toward understanding the effects of TiO2 NPs on both humans and the environment. Notably, TiO2 NPs exposure has been associated with multiple impairments of the nervous system. This review aims to provide an overview of the documented neurotoxic effects of TiO2 NPs in different species and in vitro models. Following exposure, TiO2 NPs can reach the brain, although the specific mechanism and quantity of particles that cross the blood-brain barrier (BBB) remain unclear. Exposure to TiO2 NPs has been shown to induce oxidative stress, promote neuroinflammation, disrupt brain biochemistry, and ultimately impair neuronal function and structure. Subsequent neuronal damage may contribute to various behavioral disorders and play a significant role in the onset and progression of neurodevelopmental or neurodegenerative diseases. Moreover, the neurotoxic potential of TiO2 NPs can be influenced by various factors, including exposure characteristics and the physicochemical properties of the TiO2 NPs. However, a systematic comparison of the neurotoxic effects of TiO2 NPs with different characteristics under various exposure conditions is still lacking. Additionally, our understanding of the underlying neurotoxic mechanisms exerted by TiO2 NPs remains incomplete and fragmented. Given these knowledge gaps, it is imperative to further investigate the neurotoxic hazards and risks associated with exposure to TiO2 NPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Síndromes de Neurotoxicidad , Humanos , Nanopartículas/toxicidad , Nanopartículas/química , Estrés Oxidativo , Titanio/química , Encéfalo , Síndromes de Neurotoxicidad/etiología , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
19.
Int J Gen Med ; 16: 5921-5934, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106974

RESUMEN

Purpose: China lifted its strict zero-Covid approach on December 7, 2022. This study aimed to investigate depression and anxiety symptoms and their associations among Chinese residents after the change in public policy. Methods: A cross-sectional sample of 925 Chinese residents (726 females and 199 males) was recruited using convenience and snowball sampling approach between 16 and 25 December 2022. Participants completed online questionnaires on basic information, depression, anxiety, COVID-19 related perceptions, and protective behaviors change. Results: Mild and moderate-to-severe depression symptoms were reported by 35.6% and 19.1% of participants, respectively. Nearly 40% of participants reported mild anxiety and 18.7% reported moderate-to-severe anxiety. Results from multinomial logistic regression analysis indicated that male gender, younger age, the presence of chronic disease, poorer self-rated mental health status, perceived impact, and worry were risk factors for both depression and anxiety, while higher education and protective behaviors change were protective factors. Besides, living with or caring for children (4-6 years), family members or other housemates currently with influenza-like symptoms, and perceived severity were also risk factors for depression. Conclusion: Our findings provided initial evidence that Chinese residents may face heightened depression and anxiety during the early stage after the policy was released. Furthermore, we identified some vulnerable populations in need of prioritizing mental health assistance and some potentially modifiable factors associated with depression and anxiety, which provides an important guide for developing timely and effective psychological interventions and preparing for future pandemics.

20.
Exp Ther Med ; 26(6): 570, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38023365

RESUMEN

The present study aimed to determine whether urinary mitochondrial (mt)DNA could be combined as a non-invasive biomarker with other clinical findings of kidney injury to help diagnose early diabetic nephropathy (DN). A total of 165 patients with type 2 diabetes mellitus (T2DM) were enrolled in the present study and the mtDNA levels in urine were measured using quantitative PCR. The diagnostic value of urinary mtDNA levels in patients with T2DM was compared using estimated glomerular filtration rate (eGFR) or albumin-to-creatinine ratio staging. Spearman correlation analysis was used to analyze the correlation between urinary mtDNA and other clinical findings. Correlation factors for early DN were assessed using univariate logistic regression analysis. Urinary leukocyte and glucose levels do not interfere with urinary mtDNA levels. In patients with T2DM, the level of urinary mtDNA increases in the early stages of kidney injury and further increases with the severity of kidney injury. Urinary mtDNA levels in patients with eGFR 60-90 ml/min/1.73 m2 were higher than that in patients with eGFR >90 ml/min/1.73 m2. The levels of urinary mt89DNA and mt349DNA were negatively correlated with the eGFR level (ρ=-0.437; P<0.001; ρ=-0.390; P<0.001) and positively correlated with the level of cystatin C (ρ=0.177; P=0.025; ρ=0.144; P=0.070). Urinary mtDNA is positively correlated with early DN occurrence [odds ratio (OR), 1.330; 95% confidence interval (CI), 1.175-1.507; P<0.001; OR, 1.328; 95% CI, 1.156-1.525; P<0.001]. In conclusion, urinary mtDNA combined with other clinical indicators of kidney injury may help the diagnosis of early DN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA