Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Urol Oncol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729866

RESUMEN

INTRODUCTION: The influence of androgen suppression therapy (AST) on bladder cancer (BCa) remains controversial, as recent studies have not reached a consensus regarding the relationship between AST and the incidence or prognosis of BCa. MATERIALS AND METHODS: We perform an updated systematic review and meta-analysis utilizing the most recent evidence to investigate the potential influence of AST on the incidence and prognosis of BCa. A comprehensive literature search was performed on the PubMed, Medline, Embase, Web of Science, and the Cochrane Library databases to include potentially eligible studies. Hazard ratios (HR) and odds ratios (OR) were used to calculate the incidence and prognosis of BCa. RESULTS: This meta-analysis included 22 studies with 700,755 participants which investigated the impact of AST on the risk and prognosis of BCa. The pooled results revealed no significant relation between AST and a decreased incidence of BCa (OR: 0.92, 95%CI: 0.77-1.09, P = 0.342). Subgroup analysis reported that patients receiving 5-alpha reductase inhibitors (5-ARIs) exhibited a significantly lower risk of BCa (OR: 0.83, 95%CI: 0.75-0.91, P < 0.001), while androgen deprivation therapy did not show a significant reduction (OR: 1.00, 95%CI: 0.46-2.16, P = 0.995). AST may also significantly improve the recurrence-free survival of patients with BCa (HR: 0.69, 95%CI: 0.50-0.95, P = 0.023). We also detected a significant improvement in OS among BCa patients who received 5-ARIs compared to those without 5-ARIs (HR: 0.82, 95%CI: 0.68-0.99, P = 0.037). CONCLUSION: No significant correlation was found between AST and a decreased BCa incidence, while 5-ARIs have demonstrated efficacy in reducing BCa occurrence. Moreover, patients who received AST demonstrated improved prognosis.

2.
J Clin Ultrasound ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741262

RESUMEN

Clear cell papillary renal cell carcinoma (CCPRCC) is a newly classified renal cell carcinoma with a low degree of malignancy. Its imaging features have not been studied deeply. Therefore, we reviewed the imaging features of CCPRCC. Solid CCPRCC shows high echo or isoecho mass on conventional ultrasound. Contrast enhanced ultrasound shows "fast forward and slow backward, uneven high enhancement". Computed tomography shows high enhancement and maximum enhancement in the cortical-medullary phase. Magnetic resonance imaging shows slightly low T1WI and high T2WI. This article aims to improve the understanding of CCPRCC by clinical radiologists and promote the accurate.

3.
J Adv Res ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768811

RESUMEN

INTRODUCTION: The combination of a photosensitizer and indoleamine-2,3 dioxygenase (IDO) inhibitor provides a promising photoimmunotherapy (PIT) strategy for melanoma treatment. A dual drug delivery system offers a potential approach for optimizing the inhibitory effects of PIT on melanoma proliferation and metastasis. OBJECTIVE: To develop a dual drug delivery system based on PIT and to study its efficacy in inhibiting melanoma proliferation and metastasis. METHODS: We constructed a multifunctional nano-porphyrin material (P18-APBA-HA) using the photosensitizer-purpurin 18 (P18), hyaluronic acid (HA), and 4-(aminomethyl) phenylboronic acid (APBA). The resulting P18-APBA-HA was inserted into a phospholipid membrane and the IDO inhibitor epacadostat (EPA) was loaded into the internal phase to prepare a dual drug delivery system (Lip\EPA\P18-APBA-HA). Moreover, we also investigated its physicochemical properties, targeting, anti-tumor immunity, and anti-tumor proliferation and metastasis effects. RESULTS: The designed system utilized the pH sensitivity of borate ester to realize an enhanced-targeting strategy to facilitate the drug distribution in tumor lesions and efficient receptor-mediated cellular endocytosis. The intracellular release of EPA from Lip\EPA\P18-APBA-HA was triggered by thermal radiation, thereby inhibiting IDO activity in the tumor microenvironment, and promoting activation of the immune response. Intravenous administration of Lip\EPA\P18-APBA-HA effectively induced anti-tumor immunity by promoting dendritic cell maturation, cytotoxic T cell activation, and regulatory T cell suppression, and regulating cytokine secretion, to inhibit the proliferation of melanoma and lung metastasis. CONCLUSION: The proposed nano-drug delivery system holds promise as offers a promising strategy to enhance the inhibitory effects of the combination of EPA and P18 on melanoma proliferation and metastasis.

4.
Int J Legal Med ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760564

RESUMEN

BACKGROUND & OBJECTIVE: Sex estimation is a critical aspect of forensic expertise. Some special anatomical structures, such as the maxillary sinus, can still maintain integrity in harsh environmental conditions and may be served as a basis for sex estimation. Due to the complex nature of sex estimation, several studies have been conducted using different machine learning algorithms to improve the accuracy of sex prediction from anatomical measurements. MATERIAL & METHODS: In this study, linear data of the maxillary sinus in the population of northwest China by using Cone-Beam Computed Tomography (CBCT) were collected and utilized to develop logistic, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and random forest (RF) models for sex estimation with R 4.3.1. CBCT images from 477 samples of Han population (75 males and 81 females, aged 5-17 years; 162 males and 159 females, aged 18-72) were used to establish and verify the model. Length (MSL), width (MSW), height (MSH) of both the left and right maxillary sinuses and distance of lateral wall between two maxillary sinuses (distance) were measured. 80% of the data were randomly picked as the training set and others were testing set. Besides, these samples were grouped by age bracket and fitted models as an attempt. RESULTS: Overall, the accuracy of the sex estimation for individuals over 18 years old on the testing set was 77.78%, with a slightly higher accuracy rate for males at 78.12% compared to females at 77.42%. However, accuracy of sex estimation for individuals under 18 was challenging. In comparison to logistic, KNN and SVM, RF exhibited higher accuracy rates. Moreover, incorporating age as a variable improved the accuracy of sex estimation, particularly in the 18-27 age group, where the accuracy rate increased to 88.46%. Meanwhile, all variables showed a linear correlation with age. CONCLUSION: The linear measurements of the maxillary sinus could be a valuable tool for sex estimation in individuals aged 18 and over. A robust RF model has been developed for sex estimation within the Han population residing in the northwestern region of China. The accuracy of sex estimation could be higher when age is used as a predictive variable.

5.
Eur J Med Chem ; 272: 116494, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38749268

RESUMEN

Epigenetic alterations promote cancer development by regulating the expression of various oncogenes and anti-oncogenes. Histone methylation modification represents a pivotal area in epigenetic research and numerous publications have demonstrated that aberrant histone methylation is highly correlated with tumorigenesis and development. As a key histone demethylase, lysine-specific demethylase 5B (KDM5B) demethylates lysine 4 of histone 3 (H3K4) and serves as a transcriptional repressor of certain tumor suppressor genes. Meanwhile, KDM5B inhibits STING-induced intrinsic immune response of tumor cells or recruits SETDB1 through non-enzymatic function to silence reverse transcription elements to promote immune escape. The conventional small molecule inhibitors can only inhibit the enzymatic function of KDM5B with no effect on the non-enzymatic function. In the article, we present the development of the first series of KDM5B degraders based on CPI-455 to inhibit the non-enzymatic function. Among them, GT-653 showed optimal KDM5B degradation efficiency in a ubiquitin proteasome-dependent manner. GT-653 efficiently reduced KDM5B protein levels without affecting KDM5B transcription. Interestingly, GT-653 increased H3K4me3 levels and activated the type-I interferon signaling pathway in 22RV1 cells without significant phenotypic response on cell proliferation.

6.
J Cancer Res Clin Oncol ; 150(4): 192, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613698

RESUMEN

OBJECTIVE: To date, there have been few studies examining the prognostic implications of histological subtypes in ureteral cancer. And chemotherapy plays a crucial role in the treatment of ureteral cancer, while many factors influence the efficacy of chemotherapy. This study aimed to utilize the Surveillance, Epidemiology and End Results database to assess the impact of histological type on ureteral cancer prognostic outcomes and discovered how histological type and T-stage influence the efficacy of chemotherapy. METHODS: Based on Surveillance, Epidemiology, and End Results Program, we reviewed 8915 records of patients with primary ureteral cancer from 18 centers between 2000 and 2018. We focused on the overall survival and cancer-specific survival of the records and used Kaplan‒Meier method to calculate survival curves. RESULTS: In the comparison of prognostic outcomes, atypical subtypes exhibited a less favorable prognosis compared to typical ureteral carcinoma. Notably, patients diagnosed with papillary urothelial carcinoma demonstrated the most favorable overall survival (p = 0.005). Statistically significant benefits were observed in the prognosis of patients with non-papillary urothelial carcinoma who received chemotherapy (HR = 0.860, 95% CI 0.764-0.966, p = 0.011), while chemotherapy did not yield a statistically significant effect on the prognosis of patients with papillary urothelial carcinoma (HR = 1.055, 95% CI 0.906-1.228, p = 0.493). Chemotherapy had an adverse impact on the prognosis of patients with T1 ureteral cancer (HR = 1.235, 95% CI 1.016-1.502, p = 0.034), whereas it exhibited a positive prognostic effect for T3/T4 cases (HR = 0.739, 95% CI 0.654-0.835, p < 0.001). CONCLUSIONS: Histological type affects the prognosis of ureteral cancer. And evaluation of cancer histological type and T stage in ureteral cancer patients prior to chemotherapy is mandatory.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias Ureterales , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias Ureterales/tratamiento farmacológico , Pronóstico , Bases de Datos Factuales
7.
Dalton Trans ; 53(19): 8093-8104, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38685829

RESUMEN

The photocatalytic technique has been widely recognized as a feasible technological route for sustainable energy conversion of solar energy into chemical energy. Photocatalysts play a vital role in the whole catalytic process. In particular, organolead halide perovskites have become emerging photocatalysts, owing to their precisely tunable light absorption range, high carrier diffusion mobility, and longer carrier lifetime and diffusion length. Nevertheless, their intrinsic structural instability and high carrier recombination rate are the major bottlenecks for further development in photocatalytic applications. This Frontier is focused on the recent research about the instability mechanism of organolead halide perovskites. Then, we summarize the recently developed strategies to improve the structural stability and photocatalytic activity of organolead halide materials, with an emphasis on the construction of organolead halide crystalline catalysts with high intrinsic structural stability. Finally, an outlook and challenges of organometal halide photocatalysts are presented, demonstrating the irreplaceable role of this class of emergent materials in the field of photo-energy conversion.

8.
Cancer Lett ; 590: 216847, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38583647

RESUMEN

Tamoxifen (TAM) resistance presents a major clinical obstacle in the management of estrogen-sensitive breast cancer, highlighting the need to understand the underlying mechanisms and potential therapeutic approaches. We showed that dysregulated mitochondrial dynamics were involved in TAM resistance by protecting against mitochondrial apoptosis. The dysregulated mitochondrial dynamics were associated with increased mitochondrial fusion and decreased fission, thus preventing the release of mitochondrial cytochrome c to the cytoplasm following TAM treatment. Dynamin-related GTPase protein mitofusin 1 (MFN1), which promotes fusion, was upregulated in TAM-resistant cells, and high MFN1 expression indicated a poor prognosis in TAM-treated patients. Mitochondrial translocation of MFN1 and interaction between MFN1 and mitofusin 2 (MFN2) were enhanced to promote mitochondrial outer membrane fusion. The interaction of MFN1 and cristae-shaping protein optic atrophy 1 (OPA1) and OPA1 oligomerization were reduced due to augmented OPA1 proteolytic cleavage, and their apoptosis-promoting function was reduced due to cristae remodeling. Furthermore, the interaction of MFN1 and BAK were increased, which restrained BAK activation following TAM treatment. Knockdown or pharmacological inhibition of MFN1 blocked mitochondrial fusion, restored BAK oligomerization and cytochrome c release, and amplified activation of caspase-3/9, thus sensitizing resistant cells to apoptosis and facilitating the therapeutic effects of TAM both in vivo and in vitro. Conversely, overexpression of MFN1 alleviated TAM-induced mitochondrial apoptosis and promoted TAM resistance in sensitive cells. These results revealed that dysregulated mitochondrial dynamics contributes to the development of TAM resistance, suggesting that targeting MFN1-mediated mitochondrial fusion is a promising strategy to circumvent TAM resistance.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Resistencia a Antineoplásicos , GTP Fosfohidrolasas , Dinámicas Mitocondriales , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Dinámicas Mitocondriales/efectos de los fármacos , Apoptosis/efectos de los fármacos , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Animales , Ratones , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular Tumoral , Antineoplásicos Hormonales/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Células MCF-7 , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Appl Microbiol Biotechnol ; 108(1): 261, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472661

RESUMEN

Non-coding RNA (ncRNA) plays a vital part in the regulation of immune responses, growth, and development in plants and animals. Here, the identification, characteristic analysis, and molecular verification of circRNAs in Apis cerana cerana worker larval guts were conducted, followed by in-depth investigation of the expression pattern of larval circRNAs during Ascosphaera apis infection and exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 3178 circRNAs in the larval guts of A. c. cerana were identified, with a length distribution ranging from 15 to 96,007 nt. Additionally, 155, 95, and 86 DEcircRNAs were identified in the in the 4-, 5-, and 6-day-old larval guts following A. apis infection. These DEcircRNAs were predicted to target 29, 25, and 18 parental genes relevant to 12, 20, and 17 GO terms as well as 144, 114, and 61 KEGG pathways, including 5 cellular and 4 humoral immune pathways. Complex competing endogenous RNA (ceRNA) regulatory networks were detected as being formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The target DEmRNAs were engaged in 36, 47, and 47 GO terms as well as 331, 332, and 331 pathways, including 6 cellular and 6 humoral immune pathways. Further, 19 DEcircRNAs, 5 DEmiRNAs, and 3 mRNAs were included in the sub-networks relative to 3 antioxidant enzymes. Finally, back-splicing sites within 15 circRNAs and the difference in the 15 DEcircRNAs' expression between uninoculated and A. apis-inoculated larval guts were confirmed based on molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. c. cerana larvae against A. apis invasion. KEY POINTS: • The expression pattern of circRNAs was altered in the A. cerana worker larval guts following A. apis infection. • Back-splicing sites within 15 A. cerana circRNAs were verified using molecular approaches. DEcircRNAs potentially modulated immune responses and antioxidant enzymes in A. apis-challenged host guts.


Asunto(s)
MicroARNs , Micosis , Abejas/genética , Animales , Larva/microbiología , ARN Circular/genética , Antioxidantes , ARN/genética , MicroARNs/genética
11.
Int J Biol Macromol ; 265(Pt 2): 130845, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503376

RESUMEN

Endometrial fibrosis leads to the destruction of endometrial function and affects reproductive performance. However, mechanisms underlying the development of endometrial fibrosis in sheep remain unclear. We use transcriptomic, proteomic, and metabolomic studies to reveal the formation mechanisms of endometrial fibrosis. The results showed that the fibrotic endometrial tissue phenotype presented fewer glands, accompanied by collagen deposition. Transcriptomic results indicated alterations in genes associated with the synthesis and degradation of extracellular matrix components, which alter metabolite homeostasis, especially in glycerophospholipid metabolism. Moreover, differentially expressed metabolites may play regulatory roles in key metabolic processes during fibrogenesis, including protein digestion and absorption, and amino acid synthesis. Affected by the aberrant genes, protein levels related to the extracellular matrix components were altered. In addition, based on Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes, metabolites and proteins, amino acid biosynthesis, glutathione, glycerophospholipid, arginine and proline metabolism, and cell adhesion are closely associated with fibrogenesis. Finally, we analyzed the dynamic changes in serum differential metabolites at different time points during fibrosis. Taken together, fibrosis development is related to metabolic obstacles in extracellular matrix synthesis and degradation triggered by disturbed gene and protein levels.


Asunto(s)
Multiómica , Proteómica , Animales , Ovinos , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrosis , Transcriptoma , Glicerofosfolípidos/metabolismo , Aminoácidos/metabolismo
12.
Food Res Int ; 179: 114021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342541

RESUMEN

Sheep milk is rich in fat, protein, vitamins and minerals and is also one of the most important sources of natural bioactives. Several biopeptides in sheep milk have been reported to possess antibacterial, antiviral and anti-inflammatory properties, and they may prevent type 2 diabetes (T2D), disease and cancer. However, the precise mechanism(s) underlying the protective role of sheep milk against T2D development remains unclear. Therefore, in the current study, we investigated the effect of sheep milk on insulin resistance and glucose intolerance in high-fat diet (HFD)-fed mice, by conducting intraperitoneal glucose tolerance tests, metabolic cage studies, genomic sequencing, polymerase chain reaction, and biochemical assays. Hyperinsulinemic-euglycemic clamp-based experiments revealed that mice consuming sheep milk exhibited lower hepatic glucose production than mice in the control group. These findings further elucidate the mechanism by which dietary supplementation with sheep milk alleviates HFD-induced systemic glucose intolerance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Resistencia a la Insulina , Ovinos , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/prevención & control , Diabetes Mellitus Tipo 2/prevención & control , Leche/metabolismo
14.
Food Res Int ; 175: 113818, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129015

RESUMEN

Human and animal exposure to microplastics (MPs) contained in food is inevitable because of their widespread existence in the environment. Nevertheless, MPs toxicity studies in ruminants often lack attention. Here, we assessed the cytotoxicity of polystyrene microplastics (PS MPs) on goat mammary epithelial cells (GMECs). Compared to controls, PS MPs treatment significantly reduced cell viability, altered cell morphology and disrupted organelle integrity. Detection of membrane potential and reactive oxygen species (ROS) suggested that PS MPs induced mitochondrial dysfunction and oxidative stress. Further transcriptome analysis also confirmed alterations in these pathways. In addition, several genes related to endoplasmic reticulum (ER) homeostasis were significantly regulated in the transcriptional profile. Subsequent experiments confirmed that PS MPs induce ER stress via the PERK/eIF2α/CHOP pathway, accompanied by intracellular Ca2+ overload. Meanwhile, downstream activation of the Bax/Bcl-2 pathway and caspase cascade released apoptotic signals, which led to apoptosis in GMECs. Interestingly, the addition of PERK inhibitor (ISRIB) attenuated PS MPs-induced ER stress and apoptosis, which suggests that ER stress may exacerbate PS MPs-induced cytotoxicity. This work reveals the impact of MPs on mammalian cytotoxicity, enriches the mechanisms for the toxicity of MPs, and provides insight for further assessment of the risk of MPs in food.


Asunto(s)
Microplásticos , Plásticos , Animales , Humanos , Microplásticos/toxicidad , Microplásticos/metabolismo , Estrés del Retículo Endoplásmico , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Mamíferos/metabolismo
15.
Phytomedicine ; 123: 155214, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134861

RESUMEN

BACKGROUND: Gemcitabine is a first-line chemotherapeutic agent for pancreatic cancer (PC); however, most patients who receive adjuvant gemcitabine rapidly develop resistance and recurrence. Cancer-associated fibroblasts (CAFs) are a crucial component of the tumor stroma that contribute to gemcitabine-resistance. There is thus an urgent need to find a novel therapeutic strategy to improve the efficacy of gemcitabine in PC cells under CAF-stimulation. PURPOSE: To investigate if shikonin potentiates the therapeutic effects of gemcitabine in PC cells with CAF-induced drug resistance. METHODS: PC cell-stimulated fibroblasts or primary CAFs derived from PC tissue were co-cultured with PC cells to evaluate the ability of shikonin to improve the chemotherapeutic effects of gemcitabine in vitro and in vivo. Glucose uptake assay, ATP content analysis, lactate measurement, real-time PCR, immunofluorescence staining, western blot, and plasmid transfection were used to investigate the underlying mechanism. RESULTS: CAFs were innately resistant to gemcitabine, but shikonin suppressed the PC cell-induced transactivation and proliferation of CAFs, reversed CAF-induced resistance, and restored the therapeutic efficacy of gemcitabine in the co-culture system. In addition, CAFs underwent a reverse Warburg effect when co-cultured with PC cells, represented by enhanced aerobic glycolytic metabolism, while shikonin reduced aerobic glycolysis in CAFs by reducing their glucose uptake, ATP concentration, lactate production and secretion, and glycolytic protein expression. Regarding the mechanism underlying these sensitizing effects, shikonin suppressed monocarboxylate transporter 4 (MCT4) expression and cellular membrane translocation to inhibit aerobic glycolysis in CAFs. Overexpression of MCT4 accordingly reversed the inhibitory effects of shikonin on PC cell-induced transactivation and aerobic glycolysis in CAFs, and reduced its sensitizing effects. Furthermore, shikonin promoted the effects of gemcitabine in reducing the growth of tumors derived from PC cells and CAF co-inoculation in BALB/C mice, with no significant systemic toxicity. CONCLUSION: These results indicate that shikonin reduced MCT4 expression and activation, resulting in inhibition of aerobic glycolysis in CAFs and overcoming CAF-induced gemcitabine resistance in PC. Shikonin is a promising chemosensitizing phytochemical agent when used in combination with gemcitabine for PC treatment. The results suggest that disrupting the metabolic coupling between cancer cells and stromal cells might provide an attractive strategy for improving gemcitabine efficacy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Naftoquinonas , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Gemcitabina , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Ratones Endogámicos BALB C , Neoplasias Pancreáticas/patología , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Ácido Láctico/uso terapéutico , Glucosa/metabolismo , Adenosina Trifosfato/metabolismo
17.
Ann Med ; 55(2): 2281654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37963224

RESUMEN

OBJECTIVE: The optimal cycle of neoadjuvant chemotherapy (NAC) for muscle-invasive bladder cancer (MIBC) remains controversial. This study aimed to compare the efficacy of three and four cycles of NAC in the treatment of MIBC through a systematic review and meta-analysis of the literature. MATERIALS AND METHODS: Relevant studies were systematically collected and reviewed in PubMed, Medline, Embase, Web of Science Databases, and the Cochrane Library. Relative ratios (RRs), Hazard ratios (HRs) and their 95% confidence intervals (CIs) were used to estimate outcome measures. Studies comparing the pathological response and prognosis of three versus four cycles of NAC for MIBC were included. RESULTS: Five studies were included in this meta-analysis, including 2190 patients, of whom 1016 underwent three cycles of NAC and 1174 underwent four cycles of NAC. All studies were retrospective cohort studies. We found that 4 cycles of NAC had significantly better cancer-specific survival than 3 cycles (HR = 1.31, 95%CI,1.03-1.67, p = 0.029). There was no significant difference in overall survival between patients who received 3 and 4 cycles of chemotherapy (HR = 1.18, 95%CI = 0.83-1.69, p = 0.345). Similarly, no significant difference was observed in pathological objective response (RR = 0.95, 95%CI= 0.81-1.11, p = 0.515) and complete response rates (RR = 0.87, 95%CI = 0.69-1.11, p = 0.256) in MIBC after 3 or 4 cycles of NAC. CONCLUSIONS: Three and four cycles of NAC had similar pathological responses and prognosis for MIBC, although the cancer-specific survival rate of four cycles was better than that of three cycles.


The pathological response rate and overall survival of three and four cycles of neoadjuvant chemotherapy for muscle-invasive bladder cancer were similar.Four cycles of neoadjuvant chemotherapy may improve the cancer-specific survival of patients with muscle-invasive bladder cancerIt is reasonable and feasible for clinicians to use three or four cycles of neoadjuvant chemotherapy.


Asunto(s)
Terapia Neoadyuvante , Neoplasias de la Vejiga Urinaria , Humanos , Estudios Retrospectivos , Quimioterapia Adyuvante , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Músculos/patología
18.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003547

RESUMEN

piRNAs are a class of small non-coding RNAs that play essential roles in modulating gene expression and abundant biological processes. To decode the piRNA-regulated larval response of western honeybees (Apis mellifera) to Ascosphaera apis infection, the expression pattern of piRNAs in Apis mellifera ligustica larval guts after A. apis inoculation was analyzed based on previously obtained high-quality small RNA-seq datasets, followed by structural characterization, target prediction, regulatory network investigation, and functional dissection. Here, 504, 657, and 587 piRNAs were respectively identified in the 4-, 5-, and 6-day-old larval guts after inoculation with A. apis, with 411 ones shared. These piRNAs shared a similar length distribution and first base bias with mammal piRNAs. Additionally, 96, 103, and 143 DEpiRNAs were detected in the 4-, 5-, and 6-day-old comparison groups. Targets of the DEpiRNAs were engaged in diverse pathways such as the phosphatidylinositol signaling system, inositol phosphate metabolism, and Wnt signaling pathway. These targets were involved in three energy metabolism-related pathways, eight development-associated signaling pathways, and seven immune-relevant pathways such as the Jak-STAT signaling pathway. The expression trends of five randomly selected DEpiRNAs were verified using a combination of RT-PCR and RT-qPCR. The effective overexpression and knockdown of piR-ame-945760 in A. apis-infected larval guts were achieved by feeding a specific mimic and inhibitor. Furthermore, piR-ame-945760 negatively regulated the expression of two target immune mRNAs, SOCS5 and ARF1, in the larval gut during the A. apis infection. These findings indicated that the overall expression level of piRNAs was increased and the expression pattern of piRNAs in larval guts was altered due to the A. apis infection, DEpiRNAs were putative regulators in the A. apis-response of A. m. ligustica worker larvae. Our data provide not only a platform for the functional investigation of piRNAs in honeybees, especially in bee larvae, but also a foundation for illuminating the piRNA-involved mechanisms underlying the host response to the A. apis infection.


Asunto(s)
Onygenales , ARN de Interacción con Piwi , Abejas/genética , Animales , Larva/genética , Larva/metabolismo , Vía de Señalización Wnt , Mamíferos
19.
Food Res Int ; 173(Pt 1): 113278, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803591

RESUMEN

This study aimed to investigate the hypoglycemic effect of Camel milk peptides (CMPs) on Type 2 diabetes mellitus (T2DM) mice and reveal its related mechanism from the aspect of gut microbiota and metabolites. The administering CMPs significantly alleviated the weight loss, polydipsia and polyphagia, reduced fasting blood glucose (FBG), improved insulin resistance and sensitivity, and restored the level of serum hormones, lipopolysaccharide (LPS), lipid metabolic and tissue damage. Furthermore, CMPs intervention remarkably reversed gut microbiota dysbiosis in T2DM mice by reducing the relative abundance of Proteobacteria, Allobaculum, Clostridium, Shigella and the Firmicutes/Bacteroidetes ratio, while increasing the relative abundance of Bacteroidetes and Blautia. Metabolomic analysis identified 84 different metabolites between T2DM and CMPs-treated groups, participating in three pathways of Pantothenate and CoA biosynthesis, Phenylalanine metabolism and Linoleic acid metabolism. Ureidopropionic acid, pantothenic acid, hippuric acid, hydrocinnamic acid and linoleic acid were identified as key acidic metabolites closely related to hypoglycemic effect. Correlation analysis indicated that CMPs might have a hypoglycemic effect through their impact on gut microbiota, leading to variations in short-chain fatty acids (SCFAs), acidic metabolites and metabolic pathways. These findings suggest that CMPs could be a beneficial nutritional supplement for intervention T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglucemia , Ratones , Animales , Camelus , Leche/metabolismo , Hipoglucemiantes/farmacología , Firmicutes , Ácidos Linoleicos/farmacología
20.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4981-4992, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802840

RESUMEN

This study constructed a nano-drug delivery system, A3@GMH, by co-delivering the stapled anoplin peptide(Ano-3, A3) with the light-harvesting material graphene oxide(GO), and evaluated its oncolytic immunotherapy effect on triple-negative breast cancer(TNBC). A3@GMH was prepared using an emulsion template method and its physicochemical properties were characterized. The in vivo and in vitro photothermal conversion abilities of A3@GMH were investigated using an infrared thermal imager. The oncoly-tic activity of A3@GMH against TNBC 4T1 cells was evaluated through cell counting kit-8(CCK-8), lactate dehydrogenase(LDH) release, live/dead cell staining, and super-resolution microscopy. The targeting properties of A3@GMH on 4T1 cells were assessed using a high-content imaging system and flow cytometry. In vitro and in vivo studies were conducted to investigate the antitumor mechanism of A3@GMH in combination with photothermal therapy(PTT) through inducing immunogenic cell death(ICD) in 4T1 cells. The results showed that the prepared A3@GMH exhibited distinct mesoporous and coated structures with an average particle size of(308.9±7.5) nm and a surface potential of(-6.79±0.58) mV. The encapsulation efficiency and drug loading of A3 were 23.9%±0.6% and 20.5%±0.5%, respectively. A3@GMH demonstrated excellent photothermal conversion ability and biological safety. A3@GMH actively mediated oncolytic features such as 4T1 cell lysis and LDH release, as well as ICD effects, and showed enhanced in vitro antitumor activity when combined with PTT. In vivo, A3@GMH efficiently induced ICD effects with two rounds of PTT, activated the host's antitumor immune response, and effectively suppressed tumor growth in 4T1 tumor-bearing mice, achieving an 88.9% tumor inhibition rate with no apparent toxic side effects. This study suggests that the combination of stapled anoplin peptide and PTT significantly enhances the oncolytic immunotherapy for TNBC and provides a basis for the innovative application of anti-tumor peptides derived from TCM in TNBC treatment.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Terapia Fototérmica , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Péptidos Catiónicos Antimicrobianos , Inmunoterapia/métodos , Línea Celular Tumoral , Fototerapia/métodos , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA