Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; : 176584, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39349195

RESUMEN

As a recurrent climatic phenomenon in the context of climate change, extreme rainstorms induce vertical translocation of organic matter and increase moisture content in terrestrial ecosystems. However, it remains unclear whether heavy rainstorms can impact microbial communities in the deep biosphere by modulating organic matter input. In this study, we present findings on the different responses of bacterial and fungal communities in a subsurface cave to rainstorms and moisture variations through field surveys and microcosm experiments. During periods of rainstorms, the influx of dissolved organic matter (DOM) from soil overlying the cave into cave sediments significantly enhanced the correlation between core bacteria and environmental factors, particularly fluorescence spectral indices. The resource utilization of core bacteria was diminished, while the functional diversity of core fungi remained relatively unaltered. We also performed simulated experiments with restricted external DOM inputs, in which DOM content was observed to decrease and microbial diversity increase in response to artificially increased moisture content (MC). The niche breadth of core bacteria decreased and became more closely associated with DOM as the MC increased, while the niche breadth of core fungi remained predominantly unchanged. Compared to fungi, cave bacteria exhibited higher sensitivity towards variations in DOM. The core microbiome can efficiently utilize the available organic matter and participate in nitrogen- and sulfur-related metabolic processes. The study systematically revealed distinct microbial responses to rainstorm events, thereby providing valuable insights for future investigations into energy utilization within deep biospheres.

2.
Food Microbiol ; 124: 104593, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244355

RESUMEN

Yeast assimilable nitrogen (YAN) is one of the important factors affecting yeast growth and metabolism. However, the nitrogen requirement of indigenous commercial S. cerevisiae NX11424 is unclear. In this study, metabolomics was used to analyze the metabolite profiles of the yeast strain NX11424 under high (433 mg/L) and low (55 mg/L) YAN concentrations. It was found that yeast biomass exhibited different trends under different YAN conditions and was generally positively correlated with the initial YAN concentration, while changes of key biomarkers of yeast strain NX11424 at different stages of fermentation showed a similar trend under high and low YAN concentrations. The YAN concentration affected the metabolite levels of the yeast strain NX11424, which resulted in the significant difference in the levels of pyruvic acid, α-oxoglutarate, palmitoleic acid, proline, butane-2,3-diol, citrulline, ornithine, galactinol, citramalic acid, tryptophan, alanine, phosphate and phenylethanol, mainly involving pathways such as central carbon metabolism, amino acid metabolism, fatty acid metabolism, purine metabolism, and energy metabolism. Yeast strain NX11424 could utilize proline to produce protein under a low YAN level. The intracellular level of citrulline and ornithine under high YAN concentration was higher than that under low YAN level. Yeast strain NX11424 is more suitable for fermentation at lower YAN level. The results obtained here will help to rational utilize of YAN by S. cerevisiae NX11424, and is conducive to precise control of the alcohol fermentation and improve wine quality.


Asunto(s)
Fermentación , Metabolómica , Nitrógeno , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Nitrógeno/metabolismo , Vino/análisis , Vino/microbiología , Biomasa , Aminoácidos/metabolismo
3.
Sci Rep ; 14(1): 19175, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160199

RESUMEN

This paper presents a novel computational design and fabrication method for fabric-based soft pneumatic actuators (FSPAs) that use Turing patterns, inspired by Alan Turing's morphogenesis theory. These inflatable structures can adapt their shapes with simple pressure changes and are applicable in areas like soft robotics, airbags, and temporary shelters. Traditionally, the design of such structures relies on isotropic materials and the designer's expertise, often requiring a trial-and-error approach. The present study introduces a method to automate this process using advanced numerical optimization to design and manufacture fabric-based inflatable structures with programmable shape-morphing capabilities. Initially, an optimized distribution of the material orientation field on the surface membrane is achieved through gradient-based orientation optimization. This involves a comprehensive physical deployment simulation using the nonlinear shell finite element method, which is integrated into the inner loop of the optimization algorithm. This continuous adjustment of material orientations enhances the design objectives. These material orientation fields are transformed into discretized texture patterns that replicate the same anisotropic deformations. Anisotropic reaction-diffusion equations, using diffusion coefficients determined by local orientations from the optimization step, are then utilized to create space-filling Turing pattern textures. Furthermore, the fabrication methods of these optimized Turing pattern textures are explored using fabrics through heat bonding and embroidery. The performance of the fabricated FSPAs is evaluated through three different deformation shapes: C-shaped bending, S-shaped bending, and twisting.

4.
Biomimetics (Basel) ; 9(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39194437

RESUMEN

This study investigates the performance enhancement of mandrel-coiled twisted and coiled polymer fibers with a nichrome heater (TCPFLNR) by coating with a solution of graphene-mesoporous carbon-nickel-polyvinyl alcohol. The coating process involved a one-pot synthesis utilizing graphene powder, Ni nanoparticles, mesoporous carbon, and PVA as a binding agent. The coating was performed by manually shaking the TCPFLNR and the subsequent annealing process, which results in improved thermal conductivity and actuation behavior of the TCPFLNR. Experimental results on a 60 mm long actuator demonstrated significant enhancements in actuation displacement and actuation strain (20% to 42%) under various loads with an input current of 0.27 A/power 2.16 W. The blocked stress is ~10 MPa under this 2.16 W power input and the maximum strain is 48% at optimum load of 1.4 MPa. The observed actuation strain correlated directly with the input power. The coated TCPFLNR exhibited better thermal contacts, facilitating enhanced heat transfer, and reducing power consumption by 6% to 9% compared to non-coated actuators. It was found that the nanomaterial coating helps the TCP actuator to be reliable for more than 75,000 actuation cycles at 0.1 Hz in air due to improved thermal conductivity. These findings highlight the potential for further research to optimize electrothermally operated TCP actuators and unlock advancements in this field.

5.
Plant Cell Environ ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041727

RESUMEN

Very-long-chain fatty acids (VLCFAs) are essential precursors for plant membrane lipids, cuticular waxes, suberin, and storage oils. Integral to the fatty acid elongase (FAE) complex, 3-ketoacyl-CoA synthases (KCSs) function as crucial enzymes in the VLCFA pathway, determining the chain length of VLCFA. This study explores the in-planta role of the KCS19 gene. KCS19 is predominantly expressed in leaves and stem epidermis, sepals, styles, early silique walls, beaks, pedicels, and mature embryos. Localized in the endoplasmic reticulum, KCS19 interacts with other FAE proteins. kcs19 knockout mutants displayed reduced total wax and wax crystals, particularly alkanes, while KCS19 overexpression increased these components and wax crystals. Moreover, the cuticle permeability was higher for the kcs19 mutants compared to the wild type, rendering them more susceptible to drought and salt stress, whereas KCS19 overexpression enhanced drought and salt tolerance. Disrupting KCS19 increased C18 species and decreased C20 and longer species in seed fatty acids, indicating its role in elongating C18 to C20 VLCFAs, potentially up to C24 for seed storage lipids. Collectively, KCS19-mediated VLCFA synthesis is required for cuticular wax biosynthesis and seed storage lipids, impacting plant responses to abiotic stress.

6.
NPJ Sci Food ; 8(1): 40, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918429

RESUMEN

This study examined the effect of various clarification treatments on the physicochemical properties, volatile compounds, and sensory attributes of kiwi wines produced from five different kiwifruit (Actinidia deliciosa) varieties. The degree of clarification had a minimal impact on physicochemical parameters, including the content of residual sugar, ethanol, volatile acid, titratable acidity (except for the kiwifruit variety 'Qinmei'), and the pH value. However, wines made from unclarified juices (muddy juice and pulp) displayed a higher glycerol content than those made from clarified juices. The cluster heat map and principal component analyses (PCA) demonstrated that kiwi wines produced from clarified kiwi juices possessed a higher ester content, whereas muddy juice and pulp wines contained elevated levels of higher alcohols. Quantitative descriptive analysis (QDA) indicated that clarified juice wines outperformed muddy juice and pulp wines in terms of purity, typicality, harmony, intensity, and freshness, with negligible differences in terms of palate acidity. Moreover, the clarified juice wines featured more characteristic kiwi wine aromas (kiwifruit, passionfruit, and pineapple) compared with that of the muddy juice and pulp wines, which exhibited an increased grassy flavour. Although the 100-NTU kiwifruit juice-fermented wine did not show an advantage in the cluster heat map and PCA, it presented better freshness, typicality, and intensity in the QDA, as well as a more passionfruit aroma. Based on the orthogonal partial least-squares discriminant analysis, A. deliciosa 'Xuxiang' was deemed to be the most suitable variety for vinification. This study provides crucial insights for enhancing the production of high-quality kiwi wine.

7.
Theranostics ; 14(8): 3267-3281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855181

RESUMEN

Background: Myocardial infarction (MI) as a consequence of atherosclerosis-associated acute thrombosis is a leading cause of death and disability globally. Antiplatelet and anticoagulant drugs are standard therapies in preventing and treating MI. However, all clinically used drugs are associated with bleeding complications, which ultimately limits their use in patients with a high risk of bleeding. We have developed a new recombinant drug, targ-HSA-TAP, that combines targeting and specific inhibition of activated platelets as well as anticoagulation. This drug is designed and tested for a prolonged circulating half-life, enabling unique thromboprophylaxis without bleeding complications. Methods: Targ-HSA-TAP combines a single-chain antibody (scFv) that targets activated glycoprotein IIb/IIIa on activated platelets, human serum albumin (HSA) for prolonged circulation, and tick anticoagulant peptide (TAP) for coagulation FX inhibition. A non-binding scFv is employed as a non-targeting control (non-targ-HSA-TAP). Its efficacy was investigated in vivo using murine models of acute thrombosis and cardiac ischemia-reperfusion (I/R) injury. Results: Our experiments confirmed the targeting specificity of targ-HSA-TAP to activated platelets and demonstrated effective prevention of platelet aggregation and thrombus formation, as well as FXa inhibition in vitro. Thromboprophylactic administration of targ-HSA-TAP subcutaneously in mice prevented occlusion of the carotid artery after ferric chloride injury as compared to non-targ-HSA-TAP and PBS-control treated mice. By comparing the therapeutic outcomes between targ-TAP and targ-HSA-TAP, we demonstrate the significant improvements brought by the HSA fusion in extending the drug's half-life and enhancing its therapeutic window for up to 16 h post-administration. Importantly, tail bleeding time was not prolonged with targ-HSA-TAP in contrast to the clinically used anticoagulant enoxaparin. Furthermore, in a murine model of cardiac I/R injury, mice administered targ-HSA-TAP 10 h before injury demonstrated preserved cardiac function, with significantly higher ejection fraction and fractional shortening, as compared to the non-targ-HSA-TAP and PBS control groups. Advanced strain analysis revealed reduced myocardial deformation and histology confirmed a reduced infarct size in targ-HSA-TAP treated mice compared to control groups. Conclusion: The inclusion of HSA represents a significant advancement in the design of targeted therapeutic agents for thromboprophylaxis. Our activated platelet-targeted targ-HSA-TAP is a highly effective antithrombotic drug with both anticoagulant and antiplatelet effects while retaining normal hemostasis. The long half-life of targ-HSA-TAP provides the unique opportunity to use this antithrombotic drug for more effective, long-lasting and safer anti-thrombotic prophylaxis. In cases where MI occurs, this prophylactic strategy reduces thrombus burden and effectively reduces cardiac I/R injury.


Asunto(s)
Plaquetas , Hemorragia , Albúmina Sérica Humana , Trombosis , Animales , Ratones , Trombosis/prevención & control , Trombosis/tratamiento farmacológico , Humanos , Hemorragia/prevención & control , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Masculino , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/uso terapéutico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico
8.
Environ Pollut ; 357: 124465, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38942280

RESUMEN

The microbial community colonized on microplastics (MPs), known as the 'plastisphere', has attracted extensive concern owing to its environmental implications. Coastal salt marshes, which are crucial ecological assets, are considered sinks for MPs. Despite their strong spatial heterogeneity, there is limited information on plastisphere across diverse environments in coastal salt marshes. Herein, a 1-year field experiment was conducted at three sites in the Yancheng salt marsh in China. This included two sites in the intertidal zone, bare flat (BF) and Spartina alterniflora vegetation area (SA), and one site in the supratidal zone, Phragmites australis vegetation area (PA). Petroleum-based MPs (polyethylene and expanded polystyrene) and bio-based MPs (polylactic acid and polybutylene succinate) were employed. The results revealed significant differences in bacterial community composition between the plastisphere and sediment at all three sites examined, and the species enriched in the plastisphere exhibited location-specific characteristics. Overall, the largest difference was observed at the SA site, whereas the smallest difference was observed at the BF site. Furthermore, the MP polymer types influenced the composition of the bacterial communities in the plastisphere, also exhibiting location-specific characteristics, with the most pronounced impact observed at the PA site and the least at the BF site. The polybutylene succinate plastisphere bacterial communities at the SA and PA sites were quite different from the plastispheres from the other three MP polymer types. Co-occurrence network analyses suggested that the bacterial community network in the BF plastisphere exhibited the highest complexity, whereas the network in the SA plastisphere showed relatively sparse interactions. Null model analyses underscored the predominant role of deterministic processes in shaping the assembly of plastisphere bacterial communities across all three sites, with a more pronounced influence observed in the intertidal zone than in the supratidal zone. This study enriches our understanding of the plastisphere in coastal salt marshes.


Asunto(s)
Bacterias , Microbiota , Humedales , Bacterias/clasificación , Bacterias/aislamiento & purificación , China , Microplásticos , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
9.
Plants (Basel) ; 13(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38498448

RESUMEN

The occurrence of different degrees of phosphorus deficiency in the vast majority of G. uralensis cultivation regions worldwide is common. There is a pressing need within the cultivated G. uralensis industry to identify appropriate exogenous substances that can enhance the uptake of phosphorus and improve both the yield and quality of the taproots of G. uralensis. This study was conducted to investigate the fine root and taproot morphology, physiological characteristics, and secondary metabolite accumulation in response to the supply of varying concentrations of LaCl3 to G. uralensis, to determine the optimal concentration of LaCl3 that can effectively enhance the yield and quality of G. uralensis's taproots, while also alleviating its reliance on soil phosphate fertilizer. The findings indicate that the foliar application of lanthanum enhanced root activity and increased APase activity, eliciting alterations in the fine root morphology, leading to promoting the accumulation of biomass in grown G. uralensis when subjected to P-deficient conditions. Furthermore, it was observed that the nutrient uptake of G. uralensis was significantly improved when subjected to P-deficient conditions but treated with LaCl3. Additionally, the yield and quality of the medicinal organs of G. uralensis were significantly enhanced.

10.
Food Chem ; 444: 138598, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38310780

RESUMEN

Water-in-oil (W/O) Pickering emulsions have wide applications in the food industries. However, the existing W/O Pickering particles have disadvantages such as lack of bioactivity and poor stability. In this study, naturally occurring bioactive oleanolic acid (OA) was used as a novel emulsifier for W/O emulsions. Results revealed that rod-like OA could formulate into spherical nanoparticles by self-assembly, and then be anchored onto the oil-water interface to stabilize the emulsions. Besides, both OA concentration and internal water fraction (φ) had significant effect on the properties of emulsions. Furthermore, the resulted emulsions exhibited potential application as carriers for epigallocatechin-3-gallate (EGCG), which significantly improved its UV and thermal stability. Meanwhile, it could effectively protect EGCG from gastric digestion, and controlled release in the intestine. This work demonstrated the successful application of OA as a stabilizer for W/O emulsions, and provided valuable insight into its potential as delivery system for hydrophilic instable compounds.


Asunto(s)
Nanopartículas , Ácido Oleanólico , Emulsiones , Agua , Emulsionantes , Tamaño de la Partícula
11.
J Hazard Mater ; 466: 133544, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244455

RESUMEN

The Yangtze River is an important global channel for plastics and microplastics (MPs) to enter the sea. However, the existing research on MPs in the Yangtze River has primarily focused on the mainstream region, without regarding the occurrence, spatial distribution, and ecological risks associated with tributaries, as well as their relationship with the mainstream. To address this knowledge gap, we conducted a large-scale catchment-wide investigation of the surface water in the Yangtze River, encompassing MPs (48 µm-5 mm) of the mainstream and 15 important tributaries. Tributaries and upstream regions exhibited relatively higher levels of MPs compared with the mainstream and different sections of the river. The distribution of MPs is primarily influenced by the emission of arable land and the pH of water. Notably, the upstream tributary areas demonstrated the highest ecological risks associated with MPs. Further analysis highlighted that the tributaries accounted for a contribution ranging from 16% to 67% in quantity and from 14% to 90% in mass of the microplastics observed in the mainstream. Our results suggest that the pollution of tributaries and their associated ecological risk migration must be effectively regulated.

12.
Food Chem X ; 19: 100862, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780311

RESUMEN

Microbial activity during spontaneous fermentation in alcoholic beverages have driven in developing the chemical and aromatic characteristic of products but not clear in apricot wines. We have characterised the composition of fungal communities and volatile metabolites in apricot wine spontaneous fermentation among two Shaanxi regions. Results showed that Aureobasidium, Alternaria, Pichia and Saccharomyces, were the dominant fungi in apricot wine fermentation. A total of 80 volatiles including esters, alcohols, acids and terpenes were detected from two apricot wines. Their correlations suggested that apricot wine aroma was mainly affected by Pichia kudriavzevii, rather than Saccharomyces cerevisiae we commonly considered. Furthermore, reinforced inoculation of P. kudriavzevii LQD20 has exhibited the commendable potential in enhancing sensory qualities. The results of this study provide fundamental information of the indigenous microbiota in microbial dynamic during apricot wine fermentation, which would be helpful in exploiting the strains with potential for industrial use as starter cultures.

13.
Nat Commun ; 14(1): 5519, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684245

RESUMEN

Shape-morphing structures that can reconfigure their shape to adapt to diverse tasks are highly desirable for intelligent machines in many interdisciplinary fields. Shape memory polymers are one of the most widely used stimuli-responsive materials, especially in 3D/4D printing, for fabricating shape-morphing systems. They typically go through a hot-programming step to obtain the shape-morphing capability, which possesses limited freedom of reconfigurability. Cold-programming, which directly deforms the structure into a temporary shape without increasing the temperature, is simple and more versatile but has stringent requirements on material properties. Here, we introduce grayscale digital light processing (g-DLP) based 3D printing as a simple and effective platform for fabricating shape-morphing structures with cold-programming capabilities. With the multimaterial-like printing capability of g-DLP, we develop heterogeneous hinge modules that can be cold-programmed by simply stretching at room temperature. Different configurations can be encoded during 3D printing with the variable distribution and direction of the modular-designed hinges. The hinge module allows controllable independent morphing enabled by cold programming. By leveraging the multimaterial-like printing capability, multi-shape morphing structures are presented. The g-DLP printing with cold-programming morphing strategy demonstrates enormous potential in the design and fabrication of shape-morphing structures.

14.
ACS Omega ; 8(15): 14240-14246, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37091405

RESUMEN

Blumeatin, reported herein, bearing two hydroxyl groups at C3' and C5' of ring B, is isolated from the traditional Chinese medicine Blumea balsamifera. But the isolation procedure of blumeatin from plants has limitations of prolonged duration and high cost. A procedure featuring Lewis acid-catalyzed ring closure and chiral resolution via Schiff base intermediates is provided here to prepare optically pure blumeatin and its R-isomer efficiently. Furthermore, the structure revision of putative blumeatin based on a logically synthetic procedure and NMR spectroscopic analysis was conducted. The 1D and 2D NMR data analysis unambiguously confirmed our proposal that the reported blumeatin structure has been misassigned as it corresponds to sterubin, which contains two hydroxyl groups at C3' and C4' of ring B. Finally, the results of the ear-swelling test exhibited that synthetic (±)-blumeatin and (±)-sterubin had moderate anti-inflammatory activity which was less than that of (-)-sterubin.

15.
Food Chem X ; 17: 100618, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36974178

RESUMEN

Microbiota succession in spontaneous fermentation of Cabernet Sauvignon cultivated under the rain-shelter was characterized, with open-field cultivation as the control. For both cultivation modes, Saccharomyces, Starmerella, and Mycosphearella were the principal fungi, and Tatumella, Gluconobacter, and Acinetobacter were the prevailing bacteria. Rain-shelter reduced the abundance of Hanseniaspora, Candida, Starmerella, Gluconobacter, and Lactococcus. During fermentation, fungal microbiota diversity in samples from the rain-shelter cultivation decreased more drastically than the control (p < 0.05). In terms of the correlation between microbiota and volatile compounds production, the abundance of Hanseniaspora uvarum, Candida apicola, Starmerella bacillaris, Gluconobacter oxydans, and Lactococcus lactis were positively correlated with the production of esters and higher alcohols. Instead of bacterial microbiota, fungal community succession exhibited a positive correlation with the final wine volatiles under the rain-shelter cultivation. These findings demonstrated rain-shelter cultivation influences the succession pattern of microbial communities and in turn impacts the wine aromas and flavors.

16.
Nat Commun ; 14(1): 1251, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878943

RESUMEN

Multimaterial additive manufacturing has important applications in various emerging fields. However, it is very challenging due to material and printing technology limitations. Here, we present a resin design strategy that can be used for single-vat single-cure grayscale digital light processing (g-DLP) 3D printing where light intensity can locally control the conversion of monomers to form from a highly stretchable soft organogel to a stiff thermoset within in a single layer of printing. The high modulus contrast and high stretchability can be realized simultaneously in a monolithic structure at a high printing speed (z-direction height 1 mm/min). We further demonstrate that the capability can enable previously unachievable or hard-to-achieve 3D printed structures for biomimetic designs, inflatable soft robots and actuators, and soft stretchable electronics. This resin design strategy thus provides a material solution in multimaterial additive manufacture for a variety of emerging applications.

17.
Sci Adv ; 9(6): eade4381, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763653

RESUMEN

Turing patterns are self-organizing stripes or spots widely found in biological systems and nature. Although inspiring, their applications are limited. Inflatable shape-morphing structures have attracted substantial research attention. Traditional inflatable structures use isotropic materials with geometrical features to achieve shape morphing. Recently, gradient-based optimization methods have been used to design these structures. These methods assume anisotropic materials whose orientation can vary freely. However, this assumption makes fabrication a considerable challenge by methods such as additive manufacturing, which print isotropic materials. Here, we present a methodology of using Turing patterns to bridge this gap. Specifically, we use Turing patterns to convert a design with distributed anisotropic materials to a distribution with two materials, which can be fabricated by grayscale digital light processing 3D printing. This work suggests that it is possible to apply patterns in biological systems and nature to engineering composites and offers new concepts for future material design.

18.
Sci Total Environ ; 864: 161105, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566853

RESUMEN

Microbial communities composed of few abundant and many rare species are widely involved in the biogeochemical cycles of elements. Yet little is known about the ecological roles of rare taxa in antimony (Sb) contaminated groundwater. Groundwater samples were collected along an Sb concentration gradient in the Xikuangshan antimony mine area and subjected to high through-put sequencing of 16S rRNA genes to investigate the bacterial communities. Results suggested that both abundant and rare sub-communities were dominated by Betaproteobacteria, Gammaproteobacteria, and Alphaproteobacteria, whereas rare sub-communities showed higher alpha-diversities. Multivariate analysis showed that both the abundant and rare taxa were under the stress of Sb, but the impact on rare taxa was greater. Nitrate explained a large part for the variation of the abundant sub-communities, indicating the critical role of nitrate for their activities under anoxic conditions. In contrast, bicarbonate significantly impacted rare sub-communities, suggesting their potential autotrophic characteristics. To further explore the role of rare taxa in the communities and the mechanism of affecting the community composition, a network was constructed to display the co-occurrence pattern of bacterial communities. The rare taxa contributed most of the network nodes and served as keystone species to maintain the stability of community. Abiotic factors (mainly Sb and pH) and bacterial interspecific interactions (interactions between keystone species and other bacterial groups) jointly affect the community dynamics. Functional prediction was performed to further reveal the ecological function of rare taxa in the Sb-disturbed groundwater environment. The results indicated that the rare taxa harbored much more diverse functions than their abundant counterparts. Notably, elevated Sb concentration promoted some potential autotrophic functions in rare taxa such as the oxidation of S-, N-, and Fe(II)-compounds. These results offer new insights into the roles of rare species in elemental cycles in the Sb-impacted groundwater.


Asunto(s)
Arsénico , Agua Subterránea , Antimonio/análisis , Nitratos/análisis , ARN Ribosómico 16S , Arsénico/análisis , Bacterias , Agua Subterránea/química
19.
Membranes (Basel) ; 12(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36363616

RESUMEN

Metal-organic frameworks (MOFs) are regarded as the next-generation, disruptive membrane materials, yet the straightforward fabrication of ultrathin MOF membranes on an unmodified porous support remains a critical challenge. In this work, we proposed a facile, one-step electrophoretic deposition (EPD) method for the growth of ultrathin zeolitic imidazole framework-8 (ZIF-8) membranes on a bare porous support. The crystallinity, morphology and coverage of ZIF-8 particles on support surface can be optimized via regulating EPD parameters, yet it is still difficult to ensure the integrity of a ZIF-8 membrane with the constant voltage mode. In contrast, the constant current mode is more beneficial to the growth of a defect-free ZIF-8 membrane due to the steady migration rate of colloid particles toward the electrode. With a current of 0.65 mA/cm2 and deposition time of 60 min, a 300 nm thick ZIF-8 membrane was obtained, which exhibits a CO2 permeance of 334 GPU and a CO2/CH4 separation factor of 8.8, evidencing the defect-free structure.

20.
Foods ; 11(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36141027

RESUMEN

The metabolome and transcriptome profiles of three different variations of mature Docynia delavayi fruit were synthesized to reveal their fruit color formation mechanism. A total of 787 secondary metabolites containing 149 flavonoid metabolites, most of which were flavonoids and flavonols, were identified in the three variations using ultra performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS), and we found that the secondary metabolites cyanidin-3-O-galactoside and cyanidin-3-O-glucoside were the major coloring substances in D. delavayi. This was associated with the significant upregulation of the structural genes F3H and F3'H in the anthocyanin synthesis pathway and the control genes WRKY, MYB, bZIP, bHLH, and NAC in RP. F3'H expression may play a significant role in the selection of components for anthocyanin synthesis. Our results contribute to breeding and nutritional research in D. delavayi and provide insight into metabolite studies of the anthocyanin biosynthetic pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...