Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Ethnopharmacol ; 334: 118506, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964625

RESUMEN

ETHNIC PHARMACOLOGICAL RELEVANCE: Panax ginseng is a traditional Chinese herbal medicine used to treat cardiovascular diseases (CVDs), and it is still widely used to improve the clinical symptoms of various CVDs. However, there is currently a lack of summary and analysis on the mechanism of Panax ginseng exerts its cardiovascular protective effects. This article provides a review of in vivo and in vitro pharmacological studies on Panax ginseng and its active ingredients in reducing CVDs damage. AIM OF THIS REVIEW: This review summarized the latest literature on Panax ginseng and its active ingredients in CVDs research, aiming to have a comprehensive and in-depth understanding of the cardiovascular protection mechanism of Panax ginseng, and to provide new ideas for the treatment of CVDs, as well as to optimize the clinical application of Panax ginseng. METHODS: Enrichment of pathways and biological terms using the traditional Chinese medicine molecular mechanism bioinformatics analysis tool (BATMAN-TCM). The literature search is based on electronic databases such as PubMed, ScienceDirect, Scopus, CNKI, with a search period of 2002-2023. The search terms include Panax ginseng, Panax ginseng ingredients, ginsenosides, ginseng polysaccharides, ginseng glycoproteins, ginseng volatile oil, CVDs, heart, and cardiac. RESULTS: 132 articles were ultimately included in the review. The ingredients in Panax ginseng that manifested cardiovascular protective effects are mainly ginsenosides (especially ginsenoside Rb1). Ginsenosides protected against CVDs such as ischemic reperfusion injury, atherosclerosis and heart failure mainly through improving energy metabolism, inhibiting hyper-autophagy, antioxidant, anti-inflammatory and promoting secretion of exosomes. CONCLUSION: Panax ginseng and its active ingredients have a particularly prominent effect on improving myocardial energy metabolism remodeling in protecting against CVDs. The AMPK and PPAR signaling pathways are the key targets through which Panax ginseng produces multiple mechanisms of cardiovascular protection. Extracellular vesicles and nanoparticles as carriers are potential delivery ways for optimizing the bioavailability of Panax ginseng and its active ingredients.


Asunto(s)
Enfermedades Cardiovasculares , Panax , Panax/química , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Animales , Ginsenósidos/farmacología , Ginsenósidos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Medicina Tradicional China/métodos
2.
Anal Chem ; 96(32): 13308-13316, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39078110

RESUMEN

NAD(P)H: quinone oxidoreductase-1 (NQO1) plays critical roles in antioxidation and abnormally overexpresses in tumors. Developing a fast and sensitive method of monitoring NQO1 will greatly promote cancer diagnosis in clinical practice. This study introduces a transformative colorimetric detection strategy for NQO1, harnessing an innovative competitive substrate mechanism between NQO1 and a new NADH oxidase (NOX) mimic, cobalt-nitrogen-doped carbon nanozyme (CoNC). This method ingeniously exploits the differential consumption of NADH in the presence of NQO1 to modulate the generation of H2O2 from CoNC catalysis, which is then quantified through a secondary, peroxidase-mimetic cascade reaction involving Prussian blue (PB) nanoparticles. This dual-stage reaction framework not only enhances the sensitivity of NQO1 detection, achieving a limit of detection as low as 0.67 µg mL-1, but also enables the differentiation between cancerous and noncancerous cells by their enzymatic activity profiles. Moreover, CoNC exhibits exceptional catalytic efficiency, with a specific activity reaching 5.2 U mg-1, significantly outperforming existing NOX mimics. Beyond mere detection, CoNC serves a dual role, acting as both a robust mimic of cytochrome c reductase (Cyt c) and a cornerstone for enzymatic regeneration, thereby broadening the scope of its biological applications. This study not only marks a significant step forward in the bioanalytical application of nanozymes but also sets the stage for their expanded use in clinical diagnostics and therapeutic monitoring.


Asunto(s)
Colorimetría , NAD(P)H Deshidrogenasa (Quinona) , NADH NADPH Oxidorreductasas , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/química , Humanos , NADH NADPH Oxidorreductasas/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/química , Cobalto/química , Carbono/química , Biomimética , Límite de Detección , Nitrógeno/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Ferrocianuros/química , NAD/metabolismo , NAD/química
4.
Talanta ; 277: 126275, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810380

RESUMEN

The integration of smartphones with conventional analytical approaches plays a crucial role in enhancing on-site detection platforms for point-of-care testing. Here, we developed a simple, rapid, and efficient three-channel colorimetric sensor array, leveraging the peroxidase (POD)-like activity of polydopamine-decorated FeNi foam (PDFeNi foam), to identify antioxidants using both microplate readers and smartphones for signal readouts. The exceptional catalytic capacity of PDFeNi foam enabled the quick catalytic oxidation of three typical peroxidase substrates (TMB, OPD and 4-AT) within 3 min. Consequently, we constructed a colorimetric sensor array with cross-reactive responses, which was successfully applied to differentiate five antioxidants (i.e., glycine (GLY), glutathione (GSH), citric acid (CA), ascorbic acid (AA), and tannic acid (TAN)) within the concentration range of 0.1-10 µM, quantitatively analyze individual antioxidants (with AA and CA as model analytes), and assess binary mixtures of AA and GSH. The practical application was further validated by discriminating antioxidants in serum samples with a smartphone for signal readout. In addition, since pesticides could be absorbed on the surface of PDFeNi foam through π-π stacking and hydrogen bonding, the active sites were differentially masked, leading to featured modulation on POD-like activity of PDFeNi foam, thereby forming the basis for pesticides discrimination on the sensor array. The nanozyme-based sensor array provides a simple, rapid, visual and high-throughput strategy for precise identification of various analytes with a versatile platform, highlighting its potential application in point-care-of diagnostic, food safety and environmental surveillance.


Asunto(s)
Antioxidantes , Colorimetría , Indoles , Plaguicidas , Teléfono Inteligente , Colorimetría/métodos , Antioxidantes/análisis , Antioxidantes/química , Plaguicidas/análisis , Plaguicidas/sangre , Indoles/química , Polímeros/química , Humanos
5.
Medicine (Baltimore) ; 103(15): e37655, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608050

RESUMEN

BACKGROUND: Tyrosine kinase inhibitors (TKIs) have been approved for treating patients with clinically advanced metastatic thyroid cancer. However among the many TKIs, it remains unknown which regimen is the best choice for these patients. METHODS: We conducted a systematic review and network meta-analysis to compare the survival benefits and efficacy of the available first-line regimens. We conducted an active search for phase II, III, or IV randomized controlled trials (RCTs) in the PubMed, Embase, and Cochrane databases to compare the effects of at least 2 drugs in the systemic treatment of advanced or metastatic thyroid cancer up to May 2023. The network meta-analysis model was adjusted using Bayesian Network model. Twelve trials with 2535 patients were included in our meta-analysis. The overall survival (OS), progression-free survival (PFS), and serious adverse events (SAEs) were taken as reference indicators. We also performed subgroup analyses of OS and PFS in medullary thyroid cancer (MTC) and radioiodine-refractory differentiated thyroid cancer (RR-DTC) to explore the variations of TKIs in different groups. RESULTS: As a result, apatinib had the best effect on overall survival (OS) (hazards ratio [HR] = 0.42, 95% confidence interval [CI] = 0.18-0.98), lenvatinib 18 mg/d has the best effect on progression-free survival (PFS) (HR = 0.13, 95% CI = 0.064-0.27), and cabozantinib 60 mg/d has the best safety profile. CONCLUSIONS: Our network meta-analysis showed that we believe that cabozantinib has the potential to become a widely used drug in clinical practice.


Asunto(s)
Metaanálisis en Red , Inhibidores de Proteínas Quinasas , Ensayos Clínicos Controlados Aleatorios como Asunto , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/mortalidad , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Anilidas/uso terapéutico , Anilidas/efectos adversos , Piridinas/uso terapéutico , Piridinas/efectos adversos , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Supervivencia sin Progresión , Compuestos de Fenilurea/uso terapéutico , Compuestos de Fenilurea/efectos adversos , Quinolinas/uso terapéutico , Quinolinas/efectos adversos
6.
Nat Commun ; 15(1): 3619, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684692

RESUMEN

The nitrate (NO3-) electroreduction into ammonia (NH3) represents a promising approach for sustainable NH3 synthesis. However, the variation of adsorption configurations renders great difficulties in the simultaneous optimization of binding energy for the intermediates. Though the extensively reported Cu-based electrocatalysts benefit NO3- adsorption, one of the key issues lies in the accumulation of nitrite (NO2-) due to its weak adsorption, resulting in the rapid deactivation of catalysts and sluggish kinetics of subsequent hydrogenation steps. Here we report a tandem electrocatalyst by combining Cu single atoms catalysts with adjacent Co3O4 nanosheets to boost the electroreduction of NO3- to NH3. The obtained tandem catalyst exhibits a yield rate for NH3 of 114.0 mg NH 3 h-1 cm-2, which exceeds the previous values for the reported Cu-based catalysts. Mechanism investigations unveil that the combination of Co3O4 regulates the adsorption configuration of NO2- and strengthens the binding with NO2-, thus accelerating the electroreduction of NO3- to NH3.

7.
Nanoscale ; 16(13): 6585-6595, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38465774

RESUMEN

Nicotinamide adenine dinucleotide (NADH) and its phosphorylated form, NADPH, are essential cofactors that play critical roles in cell functions, influencing antioxidation, reductive biosynthesis, and cellular pathways involved in tumor cell apoptosis and tumorigenesis. However, the use of nanomaterials to consume NAD(P)H and thus bring an impact on signaling pathways in cancer treatment remains understudied. In this study, we employed a salt template method to synthesize a carbon-coated-cobalt composite (C@Co) nanozyme, which exhibited excellent NAD(P)H oxidase (NOX)-like activity and mimicked the reaction mechanism of natural NOX. The C@Co nanozyme efficiently consumed NAD(P)H within cancer cells, leading to increased production of reactive oxygen species (ROS) and a reduction in mitochondrial membrane potential. Meanwhile, the generation of the biologically active cofactor NAD(P)+ promoted the expression of the deacetylase SIRT7, which in turn inhibited the serine/threonine kinase AKT signaling pathway, ultimately promoting apoptosis. This work sheds light on the influence of nanozymes with NOX-like activity on cellular signaling pathways in tumor therapy and demonstrates their promising antitumor effects in a tumor xenograft mouse model. These findings contribute to a better understanding of NAD(P)H manipulation in cancer treatment and suggest the potential of nanozymes as a therapeutic strategy for cancer therapy.


Asunto(s)
NADPH Oxidasas , Nanoestructuras , Sirtuinas , Animales , Humanos , Ratones , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , NAD/metabolismo , NADPH Oxidasas/farmacología , NADPH Oxidasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuinas/efectos de los fármacos , Sirtuinas/metabolismo , Nanoestructuras/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/terapia
8.
Water Res ; 253: 121353, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401473

RESUMEN

Ozonation of wastewater containing bromide (Br-) forms highly toxic organic bromine. The effectiveness of ozonation in mitigating wastewater toxicity is minimal. Simultaneous application of ozone (O3) (5 mg/L) and ferrate(VI) (Fe(VI)) (10 mg-Fe/L) reduced cytotoxicity and genotoxicity towards mammalian cells by 39.8% and 71.1% (pH 7.0), respectively, when the wastewater has low levels of Br-. This enhanced reduction in toxicity can be attributed to increased production of reactive iron species Fe(IV)/Fe(V) and reactive oxygen species (•OH) that possess higher oxidizing ability. When wastewater contains 2 mg/L Br-, ozonation increased cytotoxicity and genotoxicity by 168%-180% and 150%-155%, respectively, primarily due to the formation of organic bromine. However, O3/Fe(VI) significantly (p < 0.05) suppressed both total organic bromine (TOBr), BrO3-, as well as their associated toxicity. Electron donating capacity (EDC) measurement and precursor inference using Orbitrap ultra-high resolution mass spectrometry found that Fe(IV)/Fe(V) and •OH enhanced EDC removal from precursors present in wastewater, inhibiting electrophilic substitution and electrophilic addition reactions that lead to organic bromine formation. Additionally, HOBr quenched by self-decomposition-produced H2O2 from Fe(VI) also inhibits TOBr formation along with its associated toxicity. The adsorption of Fe(III) flocs resulting from Fe(VI) decomposition contributes only minimally to reducing toxicity. Compared to ozonation alone, integration of Fe(VI) with O3 offers improved safety for treating wastewater with varying concentrations of Br-.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Bromo , Aguas Residuales , Compuestos Férricos , Peróxido de Hidrógeno/análisis , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Hierro/química , Ozono/química , Mamíferos
9.
eNeuro ; 11(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38253540

RESUMEN

Electrophysiological recording is a powerful technique to examine neuronal substrates underlying cognition and behavior. Neuropixels probes provide a unique capacity to capture neuronal activity across many brain areas with high spatiotemporal resolution. Neuropixels are also expensive and optimized for acute, head-fixed use, both of which limit the types of behaviors and manipulations that can be studied. Recent advances have addressed the cost issue by showing chronic implant, explant, and reuse of Neuropixels probes, but the methods were not optimized for use in free-moving behavior. There were specific needs for improvement in cabling/connection stability. Here, we extend that work to demonstrate chronic Neuropixels recording, explant, and reuse in a rat model during fully free-moving operant behavior. Similar to prior approaches, we house the probe and headstage within a 3D-printed housing that avoids direct fixation of the probe to the skull, enabling eventual explant. We demonstrate innovations to allow chronic headstage connection with protection against environmental factors and a more stable cabling setup to reduce the tension that can interrupt recording. We demonstrate this approach with rats performing two different behavioral tasks, in each case showing: (1) chronic single- or dual-probe recordings in free-moving rats in operant chambers and (2) reusability of Neuropixels 1.0 probes with continued good single-unit yield after retrieval and reimplant. We thus demonstrate the potential for Neuropixels recordings in a wider range of species and preparations.


Asunto(s)
Encéfalo , Cabeza , Animales , Ratas , Cognición
11.
Environ Pollut ; 339: 122771, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37858698

RESUMEN

The ammonia/chlorine oxidation process can greatly degrade PPCPs in water. However, its effect on molecular transformations of natural organic matter (NOM) and effluent organic matter (EfOM) are still poorly understood. In this study, molecular transformations of NOM and EfOM occurring during ammonia/chlorine were explored and compared with those occurred during chlorination, using spectroscopy and mass spectrometry. Phenolic and highly unsaturated aliphatic compounds together with aliphatic compounds were found to be predominant in both NOM and EfOM samples, all of which were significantly degraded after two processes. The ammonia/chlorine process led to greater decreases in the molecular weights of such components but lower reductions in aromaticity. Compared with chlorination, ammonia/chlorine was found to be more likely to degrade compounds while remaining fluorophores or chromophores. The CH(N)O(S) precursors were found to be similar for both processes but their products were quite different. The CH(N)O(S) precursors that only found in ammonia/chlorine had higher molecular weights and greater degrees of oxidation but lower degrees of saturation. In contrast, the unique CH(N)O(S) products that only found in ammonia/chlorine exhibited lower molecular weights and lower degrees of oxidation degrees together with higher degrees of saturation. Lower total abundance of chlorinated byproducts was found by ammonia/chlorine compared with chlorination, although the former process provided a richer diversity. In all water samples, chlorinated byproducts were mainly generated by substitution reactions during ammonia/chlorine and chlorination. Overall, the findings of this study could provide new insights into the transformations of NOM and EfOM induced by ammonia/chlorine and chlorination.


Asunto(s)
Cloro , Purificación del Agua , Cloro/química , Halogenación , Desinfección/métodos , Materia Orgánica Disuelta , Amoníaco/química , Purificación del Agua/métodos , Agua
12.
Food Funct ; 14(20): 9137-9166, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37801293

RESUMEN

Lung cancer is the malignancy with the highest morbidity and mortality. Additionally, pulmonary inflammatory diseases, such as pneumonia, acute lung injury, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF), also have high mortality rates and can promote the development and progression of lung cancer. Unfortunately, available treatments for them are limited, so it is critical to search for effective drugs and treatment strategies to protect the lungs. Ginsenosides, the main active components of ginseng, have been shown to have anti-cancer and anti-inflammatory activities. In this paper, we focus on the beneficial effects of ginsenosides on lung diseases and their molecular mechanisms. Firstly, the molecular mechanism of ginsenosides against lung cancer was summarized in detail, mainly from the points of view of proliferation, apoptosis, autophagy, angiogenesis, metastasis, drug resistance and immunity. In in vivo and in vitro lung cancer models, ginsenosides Rg3, Rh2 and CK were reported to have strong anti-lung cancer effects. Then, in the models of pneumonia and acute lung injury, the protective effect of Rb1 was particularly remarkable, followed by Rg3 and Rg1, and its molecular mechanism was mainly associated with targeting NF-κB, Nrf2, MAPK and PI3K/Akt pathways to alleviate inflammation, oxidative stress and apoptosis. Additionally, ginsenosides may also have a potential health-promoting effect in the improvement of COPD, asthma and PF. Furthermore, to overcome the low bioavailability of CK and Rh2, the development of nanoparticles, micelles, liposomes and other nanomedicine delivery systems can significantly improve the efficacy of targeted lung cancer treatment. To conclude, ginsenosides can be used as both anti-lung cancer and lung protective agents or adjuvants and have great potential for future clinical applications.


Asunto(s)
Lesión Pulmonar Aguda , Ginsenósidos , Neoplasias Pulmonares , Panax , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Fosfatidilinositol 3-Quinasas , Neoplasias Pulmonares/tratamiento farmacológico , Pulmón , Neumonía/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control
13.
iScience ; 26(10): 108034, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37854699

RESUMEN

Neutrophil swarming is a complex coordinated process in which neutrophils sensing pathogen or damage signals are rapidly recruited to sites of infections or injuries. This process involves cooperation between neutrophils where autocrine and paracrine positive-feedback loops, mediated by receptor/ligand pairs including lipid chemoattractants and chemokines, amplify localized recruitment of neutrophils. This review will provide an overview of key pathways involved in neutrophil swarming and then discuss the cell intrinsic and systemic mechanisms by which NADPH oxidase 2 (NOX2) regulates swarming, including modulation of calcium signaling, inflammatory mediators, and the mobilization and production of neutrophils. We will also discuss mechanisms by which altered neutrophil swarming in disease may contribute to deficient control of infections and/or exuberant inflammation. Deeper understanding of underlying mechanisms controlling neutrophil swarming and how neutrophil cooperative behavior can be perturbed in the setting of disease may help to guide development of tools for diagnosis and precision medicine.

14.
J Agric Food Chem ; 71(41): 15170-15185, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37811859

RESUMEN

As a widely consumed spice and traditional Chinese medicine, Zingiber officinale Roscoe (ginger) has been used in the treatment of nausea, coughs, and colds. In this article, 18 new glycosides (1-18) and six known analogues (19-24) were isolated from the peel of ginger. The planar structures of these compounds were determined by using HR-ESI-MS and extensive spectroscopic techniques (UV, IR, 1D-NMR, and 2D-NMR). Their relative and absolute configurations of the stereogenic centers in the new natural products were determined by analysis of NMR data, using a quantum mechanical NMR approach and time-dependent density functional theory based electronic circular dichroism calculations. The renal fibrosis activities of the isolated natural products together with those of 6-gingerol (6-Gi), 8-gingerol (8-Gi), and 10-gingerol (10-Gi) were evaluated in TGF-ß1 induced NRK-52E cells. Compounds 9, 10, 15, 22-24, 6-Gi, 8-Gi, and 10-Gi were found to be active toward extracellular matrix, indicating that they have potential renal fibrosis activities.


Asunto(s)
Zingiber officinale , Humanos , Zingiber officinale/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glicósidos , Alcoholes Grasos/análisis , Catecoles/química , Fibrosis
15.
Med Sci Monit ; 29: e940783, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37545114

RESUMEN

BACKGROUND Acute pancreatitis, a sudden inflammation of the pancreas, can result in severe complications. The presence and volume of ascites, an abnormal accumulation of fluid in the abdomen, has been linked to disease severity. Our study investigates ascites volume, quantified via abdominal CT scans, as a potential predictive tool for disease severity. MATERIAL AND METHODS In this retrospective analysis, patients diagnosed with acute pancreatitis were evaluated. Patients were categorized into groups with and without ascites, with comparisons made regarding clinical characteristics. We further compared the mean ascitic volume against various outcome parameters in patients with ascites. Ascites volume and other predictive systems were assessed through receiver operating characteristic (ROC) curves, with the area under the ROC curve (AUC) for different predictive systems being analyzed. RESULTS The ascites group had higher severity scores and related serological indexes (P<0.05 for all). Among patients with ascites, a significant correlation was observed between ascites volume and outcome parameters (P<0.05 for all). The area under the ROC curve for predicting severe acute pancreatitis was 0.896, with 93% sensitivity and 79% specificity. Ascites volume yielded the highest diagnostic odds ratio (53.1; 95% confidence interval: 13.2,199.6). CONCLUSIONS Early-stage acute pancreatitis patients with ascites are indicative of severe illness and poor prognosis. An increase in ascites volume correlates with adverse clinical outcomes, thus highlighting the significance of ascites volume as a prognostic marker. This underscores the importance of abdominal CT in measuring ascites volume to predict disease severity.


Asunto(s)
Ascitis , Pancreatitis , Humanos , Ascitis/diagnóstico por imagen , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Enfermedad Aguda , Pancreatitis/complicaciones , Tomografía Computarizada por Rayos X/métodos , Abdomen , Curva ROC , Pronóstico , Valor Predictivo de las Pruebas
16.
Eur J Med Res ; 28(1): 305, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649072

RESUMEN

BACKGROUND: Endometriosis is associated with systemic metabolic indicators, including body mass index (BMI), glucose metabolism and lipid metabolism, while the association between metabolic indexes and the occurrence and assisted reproductive technology (ART) outcome of endometriosis is unclear. We aimed to evaluate the characteristics of systemic metabolic indexes of endometriosis patients with infertility and their effects on pregnancy outcome after ART treatment. METHODS: A retrospective cohort study involve 412 endometriosis patients and 1551 controls was conducted. Primary outcome was metabolic indexes, and secondary measures consisted of the influence of metabolic indexes on the number of retrieved oocytes and ART outcomes. RESULTS: Endometriosis patients had higher insulin (INS) [6.90(5.10-9.50) vs 6.50(4.80-8.90) µU/mL, P = 0.005]. A prediction model for endometriosis combining the number of previous pregnancies, CA125, fasting blood glucose (Glu) and INS, had a sensitivity of 73.9%, specificity of 67.8% and area under curve (AUC) of 0.77. There were no significant differences in ART outcomes and complications during pregnancy. The serum levels of Glu before pregnancy were associated with GDM both in endometriosis group (aOR 12.95, 95% CI 1.69-99.42, P = 0.014) and in control group (aOR 4.15, 95% CI 1.50-11.53, P = 0.006). CONCLUSIONS: We found serum Glu is related to the number of retrieved oocytes in control group, serum INS is related to the number of retrieved oocytes in endometriosis group, while serum Glu and INS before pregnancy are related to the occurrence of GDM in two groups. A prediction model based on metabolic indexes was established, representing a promising non-invasive method to predict endometriosis patients with known pregnancy history.


Asunto(s)
Endometriosis , Femenino , Humanos , Embarazo , Estudios Retrospectivos , Oocitos , Técnicas Reproductivas Asistidas , Glucosa
17.
ACS Omega ; 8(23): 20810-20822, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37332805

RESUMEN

With the increase of the burial depth of the no. 3 coal seam in the Zhengzhuang minefield of Qinshui Basin, the production of surface coal bed methane (CBM) vertical wells was low. By means of theoretical analysis and numerical calculation, the causes of low production of CBM vertical wells were studied from the aspects of reservoir physical properties, development technology, stress conditions, and desorption characteristics. It was found that the high in situ stress conditions and stress state changes were the main controlling factors of the low production in the field. On this basis, the mechanism of increasing production and reservoir stimulation was explored. An L-type horizontal well was constructed alternately among the existing vertical wells on the surface to initiate a method to increase the regional production of fish-bone-shaped well groups. This method has the advantages of a large fracture extension range and a wide pressure relief area. It could also effectively connect the pre-existing fracture extension area of surface vertical wells, realizing the overall stimulation of the low-yield area and increasing the regional production. Through the optimization of the favorable stimulation area in the minefield, 8 L-type horizontal wells that adopted this method were constructed in the area with high gas content (greater than 18 m3/t), a thick coal seam (thicker than 5 m), and relatively rich groundwater in the north of the minefield. The average production of a single L-type horizontal well reached 6000 m3/d, which was about 30 times that of the surrounding vertical wells. The length of the horizontal section and the original gas content of the coal seam had a significant influence on the production of the L-type horizontal wells. This method for increasing the regional production of fish-bone-shaped well groups was an effective and feasible low-yield well stimulation technology, which provided a reference for increasing the production and efficiently developing CBM under the high-stress conditions in mid-deep high-rank coal seams.

18.
Biosensors (Basel) ; 13(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37366995

RESUMEN

Flexible and wearable biosensors have received tremendous attention over the past decade owing to their great potential applications in the field of health and medicine. Wearable biosensors serve as an ideal platform for real-time and continuous health monitoring, which exhibit unique properties such as self-powered, lightweight, low cost, high flexibility, detection convenience, and great conformability. This review introduces the recent research progress in wearable biosensors. First of all, the biological fluids often detected by wearable biosensors are proposed. Then, the existing micro-nanofabrication technologies and basic characteristics of wearable biosensors are summarized. Then, their application manners and information processing are also highlighted in the paper. Massive cutting-edge research examples are introduced such as wearable physiological pressure sensors, wearable sweat sensors, and wearable self-powered biosensors. As a significant content, the detection mechanism of these sensors was detailed with examples to help readers understand this area. Finally, the current challenges and future perspectives are proposed to push this research area forward and expand practical applications in the future.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Sudor , Monitoreo Fisiológico
19.
Chemphyschem ; 24(16): e202300216, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37232190

RESUMEN

Achieving solar light-driven photocatalytic overall water splitting is the ideal and ultimate goal for solving energy and environment issues. Photocatalytic Z-scheme overall water splitting has undergone considerable development in recent years; specific approaches include a powder suspension Z-scheme system with a redox shuttle and a particulate sheet Z-scheme system. Of these, a particulate sheet has achieved a benchmark solar-to-hydrogen efficiency exceeding 1.1 %. Nevertheless, owing to intrinsic differences in the components, structure, operating environment, and charge transfer mechanism, there are several differences between the optimization strategies for a powder suspension and particulate sheet Z-scheme. Unlike a powder suspension Z-scheme with a redox shuttle, the particulate sheet Z-scheme system is more like a miniaturized and parallel p/n photoelectrochemical cell. In this review, we summarize the optimization strategies for a powder suspension Z-scheme with a redox shuttle and particulate sheet Z-scheme. In particular, attention has been focused on choosing appropriate redox shuttle and electron mediator, facilitating the redox shuttle cycle, avoiding redox mediator-induced side reactions, and constructing a particulate sheet. Challenges and prospects in the development of efficient Z-scheme overall water splitting are also briefly discussed.

20.
ChemSusChem ; 16(22): e202300202, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36971488

RESUMEN

The electroreduction of nitrate (NO3 - ) to valuable ammonia (NH3 ) is a green and appealing alternative to the Haber-Bosch process. Nevertheless, this process suffers from low performance for NH3 due to the sluggish multi-electron/proton-involved steps. In this work, a CuPd nanoalloy catalyst was developed toward NO3 - electroreduction at ambient conditions. By modulating the atomic ratio of Cu to Pd, the hydrogenation steps of NH3 synthesis during NO3 - electroreduction can be effectively controlled. At -0.7 V versus reversible hydrogen electrode (vs. RHE), the optimized CuPd electrocatalysts achieved a Faradaic efficiency for NH3 of 95.5 %, which was 1.3 and 1.8 times higher than that of Cu and Pd, respectively. Notably, at -0.9 V vs. RHE, the CuPd electrocatalysts showed a high yield rate of 36.2 mg h-1 cm-2 for NH3 with a corresponding partial current density of -430.6 mA cm-2 . Mechanism investigation revealed the enhanced performance originated from the synergistic catalytic cooperation between Cu and Pd sites. The H-atoms adsorbed on the Pd sites prefer to transfer to adjacent nitrogen intermediates adsorbed on the Cu sites, thereby promoting the hydrogenation of intermediates and the formation of NH3 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...