Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 137: 112496, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38901240

RESUMEN

Lung cancer (LC) is the most common cancer in males. As per GLOBOCAN 2020, 8.1 % of deaths and 5.9 % of cases of LC were reported in India. Our laboratory has previously reported the significant anticancer potential of 5H-benzo[h]thiazolo[2,3-b]quinazoline analogues. In this study, we have explored the anticancer potential of 7A {4-(6,7-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazolin-7-yl)phenol} and 9A {7-(4-chlorophenyl)-9-methyl-6,7-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazoline}by using in-vitro and in-vivo models of LC. In this study, we investigated the antiproliferative potential of quinazoline analogues using A549 cell line to identify the best compound of the series. The in-vitro and molecular docking studies revealed 7A and 9A compounds as potential analogues. We also performed acute toxicity study to determine the dose. After that, in-vivo studies using urethane-induced LC in male albino Wistar rats carried out further physiological, biochemical, and morphological evaluation (SEM and H&E) of the lung tissue. We have also evaluated the antioxidant level, inflammatory, and apoptotic marker expressions. 7A and 9A did not demonstrate any signs of acute toxicity. Animals treated with urethane showed a significant upregulation of oxidative stress. However, treatment with 7A and 9A restored antioxidant markers near-normal levels. SEM and H&E staining of the lung tissue demonstrated recovered architecture after treatment with 7A and 9A. Both analogues significantly restore inflammatory markers to normal level and upregulate the intrinsic apoptosis protein expression in the lung tissue. These experimental findings demonstrated the antiproliferative potential of the synthetic analogues 7A and 9A, potentially due to their anti-inflammatory and apoptotic properties.


Asunto(s)
Antiinflamatorios , Antineoplásicos , Apoptosis , Proliferación Celular , Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Quinazolinas , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Células A549 , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/uso terapéutico , Masculino , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratas Wistar , Ratas
2.
Cancer Cell Int ; 24(1): 219, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926695

RESUMEN

Lung cancer (LC) ranks second most prevalent cancer in females after breast cancer and second in males after prostate cancer. Based on the GLOBOCAN 2020 report, India represented 5.9% of LC cases and 8.1% of deaths caused by the disease. Several clinical studies have shown that LC occurs because of biological and morphological abnormalities and the involvement of altered level of antioxidants, cytokines, and apoptotic markers. In the present study, we explored the antiproliferative activity of indeno[1,2-d]thiazolo[3,2-a]pyrimidine analogues against LC using in-vitro, in-silico, and in-vivo models. In-vitro screening against A549 cells revealed compounds 9B (8-methoxy-5-(3,4,5-trimethoxyphenyl)-5,6-dihydroindeno[1,2-d]thiazolo[3,2-a]pyrimidine) and 12B (5-(4-chlorophenyl)-5,6-dihydroindeno[1,2-d]thiazolo[3,2-a]pyrimidine) as potential pyrimidine analogues against LC. Compounds 9B and 12B were docked with different molecular targets IL-6, Cyt-C, Caspase9, and Caspase3 using AutoDock Vina 4.1 to evaluate the binding affinity. Subsequently, in-vivo studies were conducted in albino Wistar rats through ethyl-carbamate (EC)- induced LC. 9B and 12B imparted significant effects on physiological (weight variation), and biochemical (anti-oxidant [TBAR's, SOD, ProC, and GSH), lipid (TC, TG, LDL, VLDL, and HDL)], and cytokine (IL-2, IL-6, IL-10, and IL-1ß) markers in EC-induced LC in albino Wistar rats. Morphological examination (SEM and H&E) and western blotting (IL-6, STAT3, Cyt-C, BAX, Bcl-2, Caspase3, and caspase9) showed that compounds 9B and 12B had antiproliferative effects. Accordingly, from the in-vitro, in-silico, and in-vivo experimental findings, we concluded that 9B and 12B have significant antiproliferative potential and are potential candidates for further evaluation to meet the requirements of investigation of new drug application.

3.
Int J Nanomedicine ; 18: 7021-7046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046236

RESUMEN

Background: Antitumor research aims to efficiently target hepatocarcinoma cells (HCC) for drug delivery. Nanostructured lipid carriers (NLCs) are promising for active tumour targeting. Cell-penetrating peptides are feasible ligands for targeted cancer treatment. Methods: In this study, we optimized gefitinib-loaded NLCs (GF-NLC) for HCC treatment. The NLCs contained cholesterol, oleic acid, Pluronic F-68, and Phospholipon 90G. The NLC surface was functionalized to enhance targeting with the cRGDfK-pentapeptide, which binds to the αvß3 integrin receptor overexpressed on hepatocarcinoma cells. Results: GF-NLC formulation was thoroughly characterized for various parameters using differential scanning calorimetry and X-ray diffraction analysis. In-vitro and in-vivo studies on the HepG2 cell line showed cRGDfK@GF-NLC's superiority over GF-NLC and free gefitinib. cRGDfK@GF-NLC exhibited significantly higher cytotoxicity, growth inhibition, and cellular internalization. Biodistribution studies demonstrated enhanced tumour site accumulation without organ toxicity. The findings highlight cRGDfK@GF-NLC as a highly efficient carrier for targeted drug delivery, surpassing non-functionalized NLCs. These functionalized NLCs offer promising prospects for improving hepatocarcinoma therapy outcomes by specifically targeting HCC cells. Conclusion: Based on these findings, cRGDfK@GF-NLC holds immense potential as a highly efficient carrier for targeted drug delivery of anticancer agents, surpassing the capabilities of non-functionalized NLCs. This research opens up new avenues for effective treatment strategies in hepatocarcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanoestructuras , Humanos , Portadores de Fármacos/química , Carcinoma Hepatocelular/tratamiento farmacológico , Gefitinib , Distribución Tisular , Neoplasias Hepáticas/tratamiento farmacológico , Nanoestructuras/química , Tamaño de la Partícula , Lípidos/química
4.
Int Immunopharmacol ; 119: 110236, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37148772

RESUMEN

Colorectal cancer (CRC) is currently recognized as the third most prevalent cancer worldwide. Vinpocetine is a synthetic derivative of the vinca alkaloid vincamine. It has been found effective in ameliorating the growth and progression of cancerous cells. However, its pharmacological effect on colon damage remains elusive. Hence, in this study, we have shown the role of vinpocetine in DMH-induced colon carcinogenesis. At first, male albino Wistar rats were administered with DMH consistently for four weeks to induce pre-neoplastic colon damage. Afterward, animals were treated with vinpocetine (4.2 and 8.4 mg/kg/day p.o.) for 15 days. Serum samples were collected to assess the physiological parameters, including ELISA and NMR metabolomics. Colon from all the groups was collected and processed separately for histopathology and western blot analysis. Vinpocetine attenuated the altered plasma parameters; lipid profile and showed anti-proliferative action as evidenced by suppressed COX-2 stimulation and decreased levels of IL-1ß, IL-2, IL-6, and IL-10. Vinpocetine is significantly effective in preventing CRC which may be associated with its anti-inflammatory and antioxidant potential. Accordingly, vinpocetine could serve as a potential anticancer agent for CRC treatment and thus be considered for future clinical and therapeutic research.


Asunto(s)
Antineoplásicos , Alcaloides de la Vinca , Ratas , Masculino , Animales , Citocinas/farmacología , Alcaloides de la Vinca/uso terapéutico , Alcaloides de la Vinca/farmacología , Colon/patología , Antineoplásicos/farmacología , Ratas Wistar
5.
Mini Rev Med Chem ; 23(1): 24-32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34856898

RESUMEN

PCSK9 is a strongly expressed protein in the liver and brain that binds to the LDLR and regulates cholesterol in the liver effectively. Other receptors with which it interacts include VLDLR, LRP1, ApoER2, and OLR1. PCSK9 gain-of-function results in lysosomal degradation of these receptors, which may result in hyperlipidemia. PCSK9 deficiency results in a lower amount of cholesterol, which reduces cholesterol's accessibility to cancer cells. PCSK9 regulates several proteins and signaling pathways in cancer, including JNK, NF-κВ, and the mitochondrial-mediated apoptotic pathway. In the liver, breast, lungs, and colon tissue, PCSK9 initiates and facilitates cancer development, while in prostate cancer cells, it induces apoptosis. PCSK9 has a significant impact on brain cancer, promoting cancer cell survival by manipulating the mitochondrial apoptotic pathway and exhibiting apoptotic activity in neurons by influencing the NF-κВ, JNK, and caspase-dependent pathways. The PCSK9 impact in cancer at different organs is explored in this study, as well as the targeted signaling mechanisms involved in cancer growth. As a result, these signaling mechanisms may be aimed for the development and exploration of anti-cancer drugs in the immediate future.


Asunto(s)
Neoplasias Encefálicas , Proproteína Convertasa 9 , Masculino , Humanos , Hígado , Apoptosis
6.
BBA Adv ; 2: 100046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37082584

RESUMEN

Fluvoxamine's (FLX's) anticancer potential was investigated in pre-clinical research utilizing a DMH-induced colorectal cancer (CRC) rat model. qRT-PCR and immunoblotting validated the mechanistic investigation. The CRC condition was induced in response to COX-2 and IL-6, however, following FLX therapy, the condition returned to normal. FLX's anti-CRC potential may be attributable to COX-2 inhibition since this molecular activity was more apparent for COX-2 than IL-6. FLX repaired the altered metabolites linked to CRC rats, according to 1H-NMR analysis. FLX was shown to be similar to 5-FU in terms of tumor protection, which may be useful in future medication development.

7.
Mini Rev Med Chem ; 22(4): 629-639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34353252

RESUMEN

Lung Cancer (LC) is the leading cause of cancer deaths worldwide. Recent research has also shown LC as a genomic disease, causing somatic mutations in the patients. Tests related to mutational analysis and genome profiles have lately expanded significantly in the genetics/genomics field of LC. This review summarizes the current knowledge about different signalling pathways of LC based on the clinical impact of molecular targets. It describes the main molecular pathways and changes involved in the development, progression, and cellular breakdown of LC and molecular changes. This review focuses on approved and targeted experimental therapies such as immunotherapy and clinical trials that examine the different targeted approaches to treating LC. We aim to clarify the differences in the extent of various genetic mutations in DNA for LC patients. Targeted molecular therapies for LC can be continued with advanced racial differences in genetic changes, which have a significant impact on the choice of drug treatment and our understanding of the profile of drug susceptibility/ resistance. The most relevant genes described in this review are EGFR, KRAS, MET, BRAF, PIK3CA, STK11, ERBB3, PTEN, and RB1. Combined research efforts in this field are required to understand the genetic difference in LC outcomes in the future.


Asunto(s)
Carcinoma , Neoplasias Pulmonares , Humanos , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Terapia Molecular Dirigida , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...