Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Cell Biosci ; 13(1): 227, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102659

RESUMEN

Various craniofacial syndromes cause skeletal malformations and are accompanied by neurological abnormalities at different levels, leading to tremendous biomedical, financial, social, and psychological burdens. Accumulating evidence highlights the importance of identifying and characterizing the genetic basis that synchronously modulates musculoskeletal and neurobehavioral development and function. Particularly, previous studies from different groups have suggested that neural EGFL-like-1 (Nell-1), a well-established osteochondrogenic inducer whose biopotency was initially identified in the craniofacial tissues, may also play a vital role in the central nervous system, particularly regarding neurological disorder pathologies. To provide first-hand behavior evidence if Nell-1 also has a role in central nervous system abnormalities, we compared the Nell-1-haploinsufficient (Nell-1+/6R) mice with their wild-type counterparts regarding their repetitive, social communication, anxiety-related, locomotor, sensory processing-related, motor coordination, and Pavlovian learning and memory behaviors, as well as their hippocampus transcriptional profile. Interestingly, Nell-1+/6R mice demonstrated core autism spectrum disorder-like deficits, which could be corrected by Risperidone, an FDA-approved anti-autism, anti-bipolar medicine. Besides, transcriptomic analyses identified 269 differential expressed genes, as well as significantly shifted alternative splicing of ubiquitin B pseudogene Gm1821, in the Nell-1+/6R mouse hippocampus, which confirmed that Nell-1 plays a role in neurodevelopment. Therefore, the current study verifies that Nell-1 regulates neurological development and function for the first time. Moreover, this study opens new avenues for understanding and treating craniofacial patients suffering from skeletal deformities and behavior, memory, and cognition difficulties by uncovering a novel bone-brain-crosstalk network. Furthermore, the transcriptomic analysis provides the first insight into deciphering the mechanism of Nell-1 in neurodevelopment.

2.
NPJ Microgravity ; 9(1): 75, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723136

RESUMEN

Microgravity-induced bone loss results in a 1% bone mineral density loss monthly and can be a mission critical factor in long-duration spaceflight. Biomolecular therapies with dual osteogenic and anti-resorptive functions are promising for treating extreme osteoporosis. We previously confirmed that NELL-like molecule-1 (NELL-1) is crucial for bone density maintenance. We further PEGylated NELL-1 (NELL-polyethylene glycol, or NELL-PEG) to increase systemic delivery half-life from 5.5 to 15.5 h. In this study, we used a bio-inert bisphosphonate (BP) moiety to chemically engineer NELL-PEG into BP-NELL-PEG and specifically target bone tissues. We found conjugation with BP improved hydroxyapatite (HA) binding and protein stability of NELL-PEG while preserving NELL-1's osteogenicity in vitro. Furthermore, BP-NELL-PEG showed superior in vivo bone specificity without observable pathology in liver, spleen, lungs, brain, heart, muscles, or ovaries of mice. Finally, we tested BP-NELL-PEG through spaceflight exposure onboard the International Space Station (ISS) at maximal animal capacity (n = 40) in a long-term (9 week) osteoporosis therapeutic study and found that BP-NELL-PEG significantly increased bone formation in flight and ground control mice without obvious adverse health effects. Our results highlight BP-NELL-PEG as a promising therapeutic to mitigate extreme bone loss from long-duration microgravity exposure and musculoskeletal degeneration on Earth, especially when resistance training is not possible due to incapacity (e.g., bone fracture, stroke).

3.
Cell Rep ; 42(5): 112299, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37080202

RESUMEN

Understanding the axis of the human microbiome and physiological homeostasis is an essential task in managing deep-space-travel-associated health risks. The NASA-led Rodent Research 5 mission enabled an ancillary investigation of the gut microbiome, varying exposure to microgravity (flight) relative to ground controls in the context of previously shown bone mineral density (BMD) loss that was observed in these flight groups. We demonstrate elevated abundance of Lactobacillus murinus and Dorea sp. during microgravity exposure relative to ground control through whole-genome sequencing and 16S rRNA analyses. Specific functionally assigned gene clusters of L. murinus and Dorea sp. capable of producing metabolites, lactic acid, leucine/isoleucine, and glutathione are enriched. These metabolites are elevated in the microgravity-exposed host serum as shown by liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomic analysis. Along with BMD loss, ELISA reveals increases in osteocalcin and reductions in tartrate-resistant acid phosphatase 5b signifying additional loss of bone homeostasis in flight.


Asunto(s)
Microbioma Gastrointestinal , Vuelo Espacial , Humanos , ARN Ribosómico 16S/genética , Cromatografía Liquida , Viaje , Espectrometría de Masas en Tándem
4.
Bioeng Transl Med ; 8(1): e10355, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684085

RESUMEN

A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.

5.
Biomaterials ; 287: 121609, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35839586

RESUMEN

Recent investigations into mechanisms behind the development of osteoporosis suggest that suppressing PPARγ-mediated adipogenesis can improve bone formation and bone mineral density. In this study, we investigated a co-treatment strategy to enhance bone formation by combining NELL-1, an osteogenic molecule that has been extensively studied for its potential use as a therapeutic for osteoporosis, with two methods of PPARγ suppression. First, we suppressed PPARγ genetically using lentiviral PPARγ-shRNA in immunocompromised mice for a proof of concept. Second, we used a PPARγ antagonist to suppress PPARγ pharmacologically in immunocompetent senile osteopenic mice for clinical transability. We found that the co-treatment strategy significantly increased bone formation, increased the proliferation stage cell population, decreased late apoptosis of primary mouse BMSCs, and increased osteogenic marker mRNA levels in comparison to the single agent treatment groups. The addition of PPARγ suppression to NELL-1 therapy enhanced NELL-1's effects on bone formation by upregulating anabolic processes without altering NELL-1's inhibitory effects on osteoclastic and adipogenic activities. Our findings suggest that combining PPARγ suppression with therapeutic NELL-1 may be a viable method that can be further developed as a novel strategy to reverse bone loss and decrease marrow adiposity in age-related osteoporosis.

6.
Skelet Muscle ; 12(1): 11, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642060

RESUMEN

BACKGROUND: As the interest in manned spaceflight increases, so does the requirement to understand the transcriptomic mechanisms that underlay the detrimental physiological adaptations of skeletal muscle to microgravity. While microgravity-induced differential gene expression (DGE) has been extensively investigated, the contribution of differential alternative splicing (DAS) to the plasticity and functional status of the skeletal muscle transcriptome has not been studied in an animal model. Therefore, by evaluating both DGE and DAS across spaceflight, we set out to provide the first comprehensive characterization of the transcriptomic landscape of skeletal muscle during exposure to microgravity. METHODS: RNA-sequencing, immunohistochemistry, and morphological analyses were conducted utilizing total RNA and tissue sections isolated from the gastrocnemius and quadriceps muscles of 30-week-old female BALB/c mice exposed to microgravity or ground control conditions for 9 weeks. RESULTS: In response to microgravity, the skeletal muscle transcriptome was remodeled via both DGE and DAS. Importantly, while DGE showed variable gene network enrichment, DAS was enriched in structural and functional gene networks of skeletal muscle, resulting in the expression of alternatively spliced transcript isoforms that have been associated with the physiological changes to skeletal muscle in microgravity, including muscle atrophy and altered fiber type function. Finally, RNA-binding proteins, which are required for regulation of pre-mRNA splicing, were themselves differentially spliced but not differentially expressed, an upstream event that is speculated to account for the downstream splicing changes identified in target skeletal muscle genes. CONCLUSIONS: Our work serves as the first investigation of coordinate changes in DGE and DAS in large limb muscles across spaceflight. It opens up a new opportunity to understand (i) the molecular mechanisms by which splice variants of skeletal muscle genes regulate the physiological adaptations of skeletal muscle to microgravity and (ii) how small molecule splicing regulator therapies might thwart muscle atrophy and alterations to fiber type function during prolonged spaceflight.


Asunto(s)
Vuelo Espacial , Transcriptoma , Empalme Alternativo , Animales , Femenino , Ratones , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , ARN/metabolismo
7.
Am J Pathol ; 192(3): 395-405, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34890556

RESUMEN

Neural epidermal growth factor-like (EGFL)-like protein (NELL)-1 is a potent and key osteogenic factor in the development and regeneration of skeletal tissues. Intriguingly, accumulative data from genome-wide association studies (GWASs) have started unveiling potential broader roles of NELL-1 beyond its functions in bone and cartilage. With exploration of the genetic variants of the entire genome in large-scale disease cohorts, GWASs have been used for establishing the connection between specific single-nucleotide polymorphisms of NELL1, in addition to osteoporosis, metabolic diseases, inflammatory conditions, neuropsychiatric diseases, neurodegenerative disorders, and malignant tumors. This review summarizes the findings from GWASs on the manifestation, significance level, implications on function, and correlation of specific NELL1 single-nucleotide polymorphisms in various disorders in humans. By offering a unique and comprehensive correlation between genetic variants and plausible functions of NELL1 in GWASs, this review illustrates the wide range of potential effects of a single gene on the pathogenesis of multiple disorders in humans.


Asunto(s)
Proteínas de Unión al Calcio , Estudio de Asociación del Genoma Completo , Osteoporosis , Humanos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cartílago , Osteogénesis , Polimorfismo de Nucleótido Simple
8.
Methods Mol Biol ; 2235: 127-137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33576974

RESUMEN

Human pericytes are a perivascular cell population with mesenchymal stem cell properties, present in all vascularized tissues. Human pericytes have a distinct immunoprofile, which may be leveraged for purposes of cell purification. Adipose tissue is the most commonly used cell source for human pericyte derivation. Pericytes can be isolated by FACS (fluorescence-activated cell sorting), most commonly procured from liposuction aspirates. Pericytes have clonal multilineage differentiation potential, and their potential utility for bone regeneration has been described across multiple animal models. The following review will discuss in vivo methods for assessing the bone-forming potential of purified pericytes. Potential models include (1) mouse intramuscular implantation, (2) mouse calvarial defect implantation, and (3) rat spinal fusion models. In addition, the presented surgical protocols may be used for the in vivo analysis of other osteoprogenitor cell types.


Asunto(s)
Células de la Médula Ósea/metabolismo , Pericitos/metabolismo , Ingeniería de Tejidos/métodos , Tejido Adiposo/citología , Animales , Células de la Médula Ósea/citología , Regeneración Ósea/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Separación Celular/métodos , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Osteogénesis/fisiología , Pericitos/citología , Ratas
10.
Dev Biol ; 471: 97-105, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33340512

RESUMEN

During neurulation, cranial neural crest cells (CNCCs) migrate long distances from the neural tube to their terminal site of differentiation. The pathway traveled by the CNCCs defines the blueprint for craniofacial construction, abnormalities of which contribute to three-quarters of human birth defects. Biophysical cues like naturally occurring electric fields (EFs) have been proposed to be one of the guiding mechanisms for CNCC migration from the neural tube to identified position in the branchial arches. Such endogenous EFs can be mimicked by applied EFs of physiological strength that has been reported to guide the migration of amphibian and avian neural crest cells (NCCs), namely galvanotaxis or electrotaxis. However, the behavior of mammalian NCCs in external EFs has not been reported. We show here that mammalian CNCCs migrate towards the anode in direct current (dc) EFs. Reversal of the field polarity reverses the directedness. The response threshold was below 30 â€‹mV/mm and the migration directedness and displacement speed increased with increase in field strength. Both CNCC line (O9-1) and primary mouse CNCCs show similar galvanotaxis behavior. Our results demonstrate for the first time that the mammalian CNCCs respond to physiological EFs by robust directional migration towards the anode in a voltage-dependent manner.


Asunto(s)
Región Branquial/embriología , Diferenciación Celular , Movimiento Celular , Electricidad , Transducción de Señal , Animales , Región Branquial/citología , Línea Celular , Ratones , Cresta Neural/citología
11.
Tissue Eng Part A ; 26(19-20): 1112-1122, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32323608

RESUMEN

A central challenge in tissue engineering is obtaining a suitable cell type with a capable delivery vehicle to replace or repair damaged or diseased tissues with tissue mimics. Notably, for skeletal muscle tissue engineering, given the inadequate availability and regenerative capability of endogenous myogenic progenitor cells as well as the tumorigenic risks presented by the currently available pluri- and multipotent stem cells, seeking a safe regenerative cell source is urgently demanded. To conquer this problem, we previously established a novel reprogramming technology that can generate multipotent cells from dermal fibroblasts using a single protein, fibromodulin (FMOD). The yield FMOD-reprogrammed (FReP) cells exhibit exceeding myogenic capability without tumorigenic risk, making them a promising and safe cell source for skeletal muscle establishment. In addition to using the optimal cell for implantation, it is equally essential to maintain cellular localization and retention in the recipient tissue environment for critical-sized muscle tissue establishment. In this study, we demonstrate that the photopolymerizable methacrylated glycol chitosan (MeGC)/type I collagen (ColI)-hydrogel provides a desirable microenvironment for encapsulated FReP cell survival, spreading, extension, and formation of myotubes in the hydrogel three-dimensionally in vitro, without undesired osteogenic, chondrogenic, or tenogenic differentiation. Furthermore, gene profiling revealed a paired box 7 (PAX7) → myogenic factor 5 (MYF5) → myogenic determination 1 (MYOD1) → myogenin (MYOG) → myosin cassette elevation in the encapsulated FReP cells during myogenic differentiation, which is similar to that of the predominant driver of endogenous skeletal muscle regeneration, satellite cells. These findings constitute the evidence that the FReP cell-MeGC/ColI-hydrogel construct is a promising tissue engineering mimic for skeletal muscle generation in vitro, and thus possesses the extraordinary potential for further in vivo validation.


Asunto(s)
Fibromodulina , Hidrogeles , Músculo Esquelético , Regeneración , Células Satélite del Músculo Esquelético , Diferenciación Celular , Células Cultivadas , Humanos , Desarrollo de Músculos
13.
Biomaterials ; 226: 119541, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31634652

RESUMEN

Arthritis, an inflammatory condition that causes pain and cartilage destruction in joints, affects over 54.4 million people in the US alone. Here, for the first time, we demonstrated the emerging role of neural EGFL like 1 (NELL-1) in arthritis pathogenesis by showing that Nell-1-haploinsufficient (Nell-1+/6R) mice had accelerated and aggravated osteoarthritis (OA) progression with elevated inflammatory markers in both spontaneous primary OA and chemical-induced secondary OA models. In the chemical-induced OA model, intra-articular injection of interleukin (IL)1ß induced more severe inflammation and cartilage degradation in the knee joints of Nell-1+/6R mice than in wildtype animals. Mechanistically, in addition to its pro-chondrogenic potency, NELL-1 also effectively suppressed the expression of inflammatory cytokines and their downstream cartilage catabolic enzymes by upregulating runt-related transcription factor (RUNX)1 in mouse and human articular cartilage chondrocytes. Notably, NELL-1 significantly reduced IL1ß-stimulated inflammation and damage to articular cartilage in vivo. In particular, NELL-1 administration markedly reduced the symptoms of antalgic gait observed in IL1ß-challenged Nell-1+/6R mice. Therefore, NELL-1 is a promising pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug (DMOAD) candidate for preventing and suppressing arthritis-related cartilage damage.


Asunto(s)
Proteínas de Unión al Calcio/genética , Cartílago Articular , Osteoartritis , Preparaciones Farmacéuticas , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Condrocitos , Condrogénesis , Interleucina-1beta/farmacología , Ratones , Osteoartritis/tratamiento farmacológico
14.
Cell Death Differ ; 27(4): 1415-1430, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31582804

RESUMEN

Upregulation of Nell-1 has been associated with craniosynostosis (CS) in humans, and validated in a mouse transgenic Nell-1 overexpression model. Global Nell-1 inactivation in mice by N-ethyl-N-nitrosourea (ENU) mutagenesis results in neonatal lethality with skeletal abnormalities including cleidocranial dysplasia (CCD)-like calvarial bone defects. This study further defines the role of Nell-1 in craniofacial skeletogenesis by investigating specific inactivation of Nell-1 in Wnt1 expressing cell lineages due to the importance of cranial neural crest cells (CNCCs) in craniofacial tissue development. Nell-1flox/flox; Wnt1-Cre (Nell-1Wnt1 KO) mice were generated for comprehensive analysis, while the relevant reporter mice were created for CNCC lineage tracing. Nell-1Wnt1 KO mice were born alive, but revealed significant frontonasal and mandibular bone defects with complete penetrance. Immunostaining demonstrated that the affected craniofacial bones exhibited decreased osteogenic and Wnt/ß-catenin markers (Osteocalcin and active-ß-catenin). Nell-1-deficient CNCCs demonstrated a significant reduction in cell proliferation and osteogenic differentiation. Active-ß-catenin levels were significantly low in Nell-1-deficient CNCCs, but were rescued along with osteogenic capacity to a level close to that of wild-type (WT) cells via exogenous Nell-1 protein. Surprisingly, 5.4% of young adult Nell-1Wnt1 KO mice developed hydrocephalus with premature ossification of the intrasphenoidal synchondrosis and widened frontal, sagittal, and coronal sutures. Furthermore, the epithelial cells of the choroid plexus and ependymal cells exhibited degenerative changes with misplaced expression of their respective markers, transthyretin and vimentin, as well as dysregulated Pit-2 expression in hydrocephalic Nell-1Wnt1 KO mice. Nell-1Wnt1 KO embryos at E9.5, 14.5, 17.5, and newborn mice did not exhibit hydrocephalic phenotypes grossly and/or histologically. Collectively, Nell-1 is a pivotal modulator of CNCCs that is essential for normal development and growth of the cranial vault and base, and mandibles partially via activating the Wnt/ß-catenin pathway. Nell-1 may also be critically involved in regulating cerebrospinal fluid homeostasis and in the pathogenesis of postnatal hydrocephalus.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Linaje de la Célula , Anomalías Craneofaciales/patología , Hidrocefalia/patología , Osteocondrodisplasias/patología , Proteína Wnt1/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular , Anomalías Craneofaciales/complicaciones , Regulación hacia Abajo , Femenino , Hidrocefalia/complicaciones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Cresta Neural/patología , Osteocondrodisplasias/complicaciones , Osteogénesis , Penetrancia , Vía de Señalización Wnt
15.
Ann Plast Surg ; 84(2): 222-231, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31688125

RESUMEN

Current scar surveys have included many questions to evaluate the physical characteristics of scars, with some expanding to include physical implications and patient opinions. This review provides an analysis of frequently used scar assessment methods to date and highlights potential areas for improvement. We build the case that a new assessment tool is necessary, specifically one that centers on psychosocial consequences of scars that influence patient decision making for treatment, allowing physicians to individualize treatment conversations with patients. We postulate that survey techniques used in consumer product marketing, such as choice-based conjoint analysis, may be effective in determining the factors strongly influencing patient decision making and spending in scar treatment; therefore, more research in this area is warranted. By incorporating these psychosocial and economic considerations driving scar treatment decisions, future scar assessment tools may accomplish much more than characterizing/documenting the clinical aspects of scars. Rather, these patient-centered, holistic tools may be implemented by plastic surgeons and other clinicians specifically to provide patients with personalized treatment options that maximize long-term patient satisfaction.


Asunto(s)
Cicatriz/clasificación , Cicatriz/psicología , Toma de Decisiones , Humanos , Calidad de Vida , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad
17.
J Clin Invest ; 129(8): 3236-3251, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31305260

RESUMEN

Tumorigenicity is a well-documented risk to overcome for pluripotent or multipotent cell applications in regenerative medicine. To address the emerging demand for safe cell sources in tissue regeneration, we established a novel, protein-based reprogramming method that does not require genome integration or oncogene activation to yield multipotent fibromodulin (FMOD)-reprogrammed (FReP) cells from dermal fibroblasts. When compared with induced pluripotent stem cells (iPSCs), FReP cells exhibited a superior capability for bone and skeletal muscle regeneration with markedly less tumorigenic risk. Moreover, we showed that the decreased tumorigenicity of FReP cells was directly related to an upregulation of cyclin-dependent kinase inhibitor 2B (CDKN2B) expression during the FMOD reprogramming process. Indeed, sustained suppression of CDKN2B resulted in tumorigenic, pluripotent FReP cells that formed teratomas in vivo that were indistinguishable from iPSC-derived teratomas. These results highlight the pivotal role of CDKN2B in cell fate determination and tumorigenic regulation and reveal an alternative pluripotent/multipotent cell reprogramming strategy that solely uses FMOD protein.


Asunto(s)
Reprogramación Celular , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/biosíntesis , Fibromodulina/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Madre Multipotentes/metabolismo , Teratoma/metabolismo , Regulación hacia Arriba , Línea Celular , Fibromodulina/genética , Humanos , Células Madre Multipotentes/patología , Teratoma/genética , Teratoma/patología
18.
Am J Pathol ; 189(3): 648-664, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30593824

RESUMEN

The Food and Drug Administration-approved clinical dose (1.5 mg/mL) of bone morphogenetic protein-2 (BMP2) has been reported to induce significant adverse effects, including cyst-like adipose-infiltrated abnormal bone formation. These undesirable complications occur because of increased adipogenesis, at the expense of osteogenesis, through BMP2-mediated increases in the master regulatory gene for adipogenesis, peroxisome proliferator-activated receptor-γ (PPARγ). Inhibiting PPARγ during osteogenesis has been suggested to drive the differentiation of bone marrow stromal/stem cells toward an osteogenic, rather than an adipogenic, lineage. We demonstrate that knocking down PPARγ while concurrently administering BMP2 can reduce adipogenesis, but we found that it also impairs BMP2-induced osteogenesis and leads to bone nonunion in a mouse femoral segmental defect model. In addition, in vitro studies using the mouse bone marrow stromal cell line M2-10B4 and mouse primary bone marrow stromal cells confirmed that PPARγ knockdown inhibits BMP2-induced adipogenesis; attenuates BMP2-induced cell proliferation, migration, invasion, and osteogenesis; and escalates BMP2-induced cell apoptosis. More important, BMP receptor 2 and 1B expression was also significantly inhibited by the combined BMP2 and PPARγ knockdown treatment. These findings indicate that PPARγ is critical for BMP2-mediated osteogenesis during bone repair. Thus, uncoupling BMP2-mediated osteogenesis and adipogenesis using PPARγ inhibition to combat BMP2's adverse effects may not be feasible.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea , Fémur , Osteogénesis , PPAR gamma/metabolismo , Adipogénesis/genética , Animales , Proteína Morfogenética Ósea 2/farmacología , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Fémur/lesiones , Fémur/metabolismo , Fémur/patología , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , PPAR gamma/genética
19.
J Bone Miner Res ; 34(3): 533-546, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30352124

RESUMEN

NELL-1, an osteoinductive protein, has been shown to regulate skeletal ossification. Interestingly, an interstitial 11p14.1-p15.3 deletion involving the Nell-1 gene was recently reported in a patient with short stature and delayed fontanelle closure. Here we sought to define the role of Nell-1 in endochondral ossification by investigating Nell-1-specific inactivation in Col2α1-expressing cell lineages. Nell-1flox/flox ; Col2α1-Cre+ (Nell-1Col2α1 KO) mice were generated for comprehensive analysis. Nell-1Col2α1 KO mice were born alive but displayed subtle femoral length shortening. At 1 and 3 months postpartum, Nell-1 inactivation resulted in dwarfism and premature osteoporotic phenotypes. Specifically, Nell-1Col2α1 KO femurs and tibias exhibited significantly reduced length, bone mineral density (BMD), bone volume per tissue volume (BV/TV), trabecular number/thickness, cortical volume/thickness/density, and increased trabecular separation. The decreased bone formation rate revealed by dynamic histomorphometry was associated with altered numbers and/or function of osteoblasts and osteoclasts. Furthermore, longitudinal observations by in vivo micro-CT showed delayed and reduced mineralization at secondary ossification centers in mutants. Histologically, reduced staining intensities of Safranin O, Col-2, Col-10, and fewer BrdU-positive chondrocytes were observed in thinner Nell-1Col2α1 KO epiphyseal plates along with altered distribution and weaker expression level of Ihh, Patched-1, PTHrP, and PTHrP receptor. Primary Nell-1Col2α1 KO chondrocytes also exhibited decreased proliferation and differentiation, and its downregulated expression of the Ihh-PTHrP signaling molecules can be partially rescued by exogenous Nell-1 protein. Moreover, intranuclear Gli-1 protein and gene expression of the Gli-1 downstream target genes, Hip-1 and N-Myc, were also significantly decreased with Nell-1 inactivation. Notably, the rescue effects were diminished/reduced with application of Ihh signaling inhibitors, cyclopamine or GANT61. Taken together, these findings suggest that Nell-1 is a pivotal modulator of epiphyseal homeostasis and endochondral ossification. The cumulative chondrocyte-specific Nell-1 inactivation significantly impedes appendicular skeletogenesis resulting in dwarfism and premature osteoporosis through inhibiting Ihh signaling and predominantly altering the Ihh-PTHrP feedback loop. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Condrocitos/metabolismo , Enanismo/metabolismo , Osteogénesis , Osteoporosis/metabolismo , Animales , Condrocitos/patología , Enanismo/diagnóstico por imagen , Enanismo/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Ratones Noqueados , Osteoporosis/diagnóstico por imagen , Osteoporosis/genética , Osteoporosis/patología , Proteína Relacionada con la Hormona Paratiroidea/genética , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Microtomografía por Rayos X
20.
Sci Rep ; 8(1): 15618, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30353078

RESUMEN

The vascular wall within adipose tissue is a source of mesenchymal progenitors, referred to as perivascular stem/stromal cells (PSC). PSC are isolated via fluorescence activated cell sorting (FACS), and defined as a bipartite population of pericytes and adventitial progenitor cells (APCs). Those factors that promote the differentiation of PSC into bone or fat cell types are not well understood. Here, we observed high expression of WISP-1 among human PSC in vivo, after purification, and upon transplantation in a bone defect. Next, modulation of WISP-1 expression was performed, using WISP-1 overexpression, WISP-1 protein, or WISP-1 siRNA. Results demonstrated that WISP-1 is expressed in the perivascular niche, and high expression is maintained after purification of PSC, and upon transplantation in a bone microenvironment. In vitro studies demonstrate that WISP-1 has pro-osteogenic/anti-adipocytic effects in human PSC, and that regulation of BMP signaling activity may underlie these effects. In summary, our results demonstrate the importance of the matricellular protein WISP-1 in regulation of the differentiation of human stem cell types within the perivascular niche. WISP-1 signaling upregulation may be of future benefit in cell therapy mediated bone tissue engineering, for the healing of bone defects or other orthopaedic applications.


Asunto(s)
Huesos/metabolismo , Huesos/fisiología , Proteínas CCN de Señalización Intercelular/metabolismo , Grasas/metabolismo , Osteogénesis/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/metabolismo , Células Madre/fisiología , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiología , Diferenciación Celular/fisiología , Separación Celular/métodos , Células Cultivadas , Microambiente Celular/fisiología , Citometría de Flujo/métodos , Humanos , Pericitos/metabolismo , Pericitos/fisiología , Ingeniería de Tejidos/métodos , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...