Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Occup Environ Hyg ; : 1-10, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830228

RESUMEN

The National Institute for Occupational Safety and Health recommends the use of nitrile gloves with a minimum thickness of 5.0 ± 2.0 mil [0.127 ± 0.051 millimeters] in situations where it is suspected or known that fentanyl or other illicit drugs are present. However, there is limited data available on fentanyl permeation through gloves. Current test methods used to measure fentanyl permeation do not consider the effect of glove fit and flexion. Furthermore, first responders need to have PPE readily available in the field, and storage conditions may affect the protective performance of the gloves. The objective of this study was to evaluate the effects of glove stretch and storage temperatures on glove durability and barrier performance against fentanyl. Nine nitrile glove models previously shown to be resistant to fentanyl permeation were selected for this investigation. These nine models were stretched 25% in one linear direction, to consider glove fit and flexion, and tested against fentanyl hydrochloride permeation. Additionally, four of the nine glove models were stored at 48 °C, 22 °C, and -20 °C, and evaluated for tensile strength, ultimate elongation, and puncture resistance after up to 16 wk of storage and fentanyl permeation after up to 8 wk of storage. At least one sample for six of the nine tested models had maximum permeation over the test method fail threshold when stretched. The tested storage temperatures showed no effect on glove tensile strength, ultimate elongation, and puncture resistance. The findings of this study can be used to inform PPE recommendations, with consideration to storage practices and proper sizing for first responders with potential exposure to fentanyl and other illicit drugs. The results of this study can be used to assess the need for new standard test methods to evaluate the barrier performance of gloves and shelf-life determination with consideration to glove fit.

2.
Sci Total Environ ; 912: 169428, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104815

RESUMEN

Wearing masks to prevent infectious diseases, especially during the COVID-19 pandemic, is common. However, concerns arise about inhalation exposure to microplastics (MPs) when disposable masks are improperly reused. In this study, we assessed whether disposable masks release inhalable MPs when reused in simulated wearing conditions. All experiments were conducted using a controlled test chamber setup with a constant inspiratory flow. Commercially available medical masks with a three-layer material, composition comprising polypropylene (PP in the outer and middle layers) and polyethylene (PE in the inner layer), were used as the test material. Brand-new masks with and without hand rubbing, as well as reused medical masks, were tested. Physical properties (number, size, and shape) and chemical composition (polymers) were identified using various analytical techniques such as fluorescence staining, fluorescence microscopy, and micro-Fourier Transform Infrared Spectroscopy (µFTIR). Scanning Electron Microscopy (SEM) was used to scrutinize the surface structure of reused masks across different layers, elucidating the mechanism behind the MP generation. The findings revealed that brand-new masks subjected to hand rubbing exhibited a higher cumulative count of MPs, averaging approximately 1.5 times more than those without hand rubbing. Fragments remained the predominant shape across all selected size classes among the released MPs from reused masks, primarily through a physical abrasion mechanism, accounting for >90 % of the total MPs. The numbers of PE particles were higher than PP particles, indicating that the inner layer of the mask contributed more inhalable MPs than the middle and outer layers combined. The released MPs from reused masks reached their peak after 8 h of wearing. This implies that regularly replacing masks serves as a preventive measure and mitigates associated health risks of inhalation exposure to MPs.


Asunto(s)
Exposición por Inhalación , Contaminantes Químicos del Agua , Humanos , Exposición por Inhalación/prevención & control , Máscaras , Microplásticos , Pandemias , Plásticos , Polietileno
3.
J Occup Environ Hyg ; 20(12): 610-620, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37682702

RESUMEN

Both respirators and surgical masks (SM) are used as source control devices. During the COVID-19 pandemic, there was much interest in understanding the extent of particle total outward leakage (TOL) from these devices. The objective of this study was to quantify the TOL for five categories of devices: SMs, National Institute for Occupational Safety and Health (NIOSH) Approved N95 filtering facepiece respirators (FFRs) without exhalation valves, NIOSH Approved N95 FFRs with exhalation valves (N95 FFRV), NIOSH Approved elastomeric half-mask respirators (EHMRs) with exhalation valves, and NIOSH Approved EHMRs with an SM covering the exhalation valve (EHMRSM). A benchtop test system was designed to test two models of each device category. Each device was mounted on a headform at three faceseal levels (0% faceseal, 50% faceseal, and 100% faceseal). At each faceseal level, the TOL was assessed at three flow rates of minute ventilations of 17, 28, and 39 L/min. The experimental design was a split-split-plot configuration. Device type, faceseal level, flow rate, and the interaction of device type and faceseal level were found to have a significant effect (p-value < 0.05) on the TOL. This study found that the N95 FFRs without exhalation valves had the lowest mean TOL. The SMs had about three times higher TOL than the N95 FFRs without exhalation valves. The TOL of the N95 FFRV was comparable to that of the SM at 0% and 50% faceseal on average overall conditions, but the N95 FFRV had a significantly higher TOL than the SM at a 100% faceseal. The EHMRs had the highest TOL because of the exhalation valve. Using an SM to cover the exhalation valve did not improve the EHMRs' efficiency in mitigating the TOL. Caution should be exercised when using N95 FFRVs as a source control measure against respiratory activities with heavy work rates, such as performing CPR. Results of this study showed that reduced faceseal leakage for N95 FFRs and SMs improves source control.


Asunto(s)
Exposición Profesional , Dispositivos de Protección Respiratoria , Estados Unidos , Humanos , Exposición Profesional/prevención & control , Máscaras , Pandemias , Ventiladores Mecánicos , Filtración
4.
Environ Pollut ; 316(Pt 2): 120652, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375582

RESUMEN

The influence of long-range transport (LRT) of air pollutants on neighboring regions and countries has been documented. The magnitude of LRT aerosols and related constituents can misdirect control strategies for local air quality management. In this study, we aimed to quantify PM2.5 (diameter less than 2.5 µm, PM2.5) and associated metals derived from local sources and LRT in different geographic locations in Taiwan using advanced receptor models. We collected daily PM2.5 samples (n = âˆ¼1000) and analyzed 28 metals every three days from 2016 to 2018 in the northern, central-south, eastern, and southern areas of Taiwan. We first used a machine learning technique with a cluster algorithm coupled with a backward trajectory to classify local, regional, and LRT-related aerosols. We then quantified the source contributions with a positive matrix factorization (PMF) model for Taiwan weighted by region-specific populations. The northern and eastern regions were found to be more vulnerable to LRT-related PM2.5 and metals than the central-south and southern regions in Taiwan. The LRT increased Pb and As concentrations by 90-200% and ∼40% in the northern and central-south regions. Ambient PM2.5-metals mainly originated from local traffic-related emissions in the northern, central-south, and southern regions, whereas oil combustion was the primary source of PM2.5-metals in the eastern region. By subtracting the influence from the LRT, the contributions of domestic emission sources to ambient PM2.5 metals in Taiwan were 35% from traffic-related emission, 17% from non-ferrous metallurgy, 13% from iron ore and steel factories, 12% from coal combustion, 12% from oil combustion, 10% from incinerator emissions, and <1% from cement manufacturing emissions. This study proposed an advanced method for refining local source contributions to ambient PM2.5 metals in Taiwan, which provides useful information on regional control strategies.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Taiwán , Estaciones del Año , Contaminantes Atmosféricos/análisis , Aerosoles/análisis , Metales/análisis , Aprendizaje Automático , Algoritmos , Emisiones de Vehículos/análisis
5.
Otolaryngol Head Neck Surg ; 163(3): 508-516, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32450780

RESUMEN

OBJECTIVES: To assess the exposure of surgical personnel to known carcinogens during pediatric tonsillectomy and adenoidectomy (T&A) and compare the efficacy of surgical smoke evacuation systems during T&A. STUDY DESIGN: Prospective, case series. SETTING: Tertiary children's hospital. SUBJECTS AND METHODS: The present study assessed operating room workers' exposure to chemical compounds and aerosolized particulates generated during T&A. We also investigated the effect of 3 different smoke-controlling methods: smoke-evacuator pencil cautery (SE), cautery with suction held by an assistant (SA), and cautery without suction (NS). RESULTS: Thirty cases were included: 12 in the SE group, 9 in SA, and 9 in NS. The chemical exposure levels were lower than or similar to baseline background concentrations, with the exception of methylene chloride and acetaldehyde. Within the surgical plume, none of the chemical compounds exceeded the corresponding occupational exposure limit (OEL). The mean particulate number concentration in the breathing zone during tonsillectomy was 508 particles/cm3 for SE compared to 1661 particles/cm3 for SA and 8208 particles/cm3 for NS cases. NS was significantly different compared to the other two methods (P = .0009). CONCLUSIONS: Although the exposure levels to chemicals were considerably lower than the OELs, continuous exposures to these chemicals could cause adverse health effects to surgical personnel. These findings suggest that the use of a smoke-evacuator pencil cautery or an attentive assistant with handheld suction would reduce exposure levels to the aerosolized particles during routine T&A, compared to the use of cautery without suction.


Asunto(s)
Adenoidectomía/instrumentación , Electrocoagulación/efectos adversos , Electrocoagulación/instrumentación , Exposición Profesional/prevención & control , Humo/efectos adversos , Tonsilectomía/instrumentación , Adenoidectomía/efectos adversos , Humanos , Quirófanos , Estudios Prospectivos , Tonsilectomía/efectos adversos
6.
Otolaryngol Head Neck Surg ; 162(6): 867-872, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32228131

RESUMEN

OBJECTIVES: To describe the effect of monopolar electrocautery (EC) settings on surgical plume particulate concentration during pediatric tonsillectomy. STUDY DESIGN: Cross-sectional study. SETTING: Tertiary medical center. SUBJECTS AND METHODS: During total tonsillectomy exclusively performed with EC, air was sampled with a surgeon-worn portable particle counter. The airborne mean and maximum particle concentrations were compared for tonsillectomy performed with EC at 12 W vs 20 W, with smoke evacuation system (SES) and no smoke evacuation (NS). RESULTS: A total of 36 children were included in this analysis: 9 cases with EC at 12 W and SES (12SES), 9 cases with EC at 20 W and SES (20SES), 9 cases with EC at 12 W without SES (12NS), and 9 cases with EC at 20 W without SES (20NS). Mean particle number concentration in the breathing zone during tonsillectomy was 1661 particles/cm3 for 12SES, 5515 particles/cm3 for 20SES, 8208 particles/cm3 for 12NS, and 78,506 particles/cm3 for 20NS. There was a statistically significant difference in the particle number concentrations among the 4 groups. The correlation between the particle number concentration and EC time was either moderate (for 12SES) or negative (for remaining groups). CONCLUSION: Airborne particle concentrations during tonsillectomy are over 9.5 times higher when EC is set at 20 W vs 12 W with NS, which is mitigated to 3.3 times with SES. Applying lower EC settings with SES during pediatric tonsillectomy significantly reduces surgical plume exposure for patients, surgeons, and operating room personnel, which is a well-known occupational health hazard.


Asunto(s)
Polvo/análisis , Electrocoagulación/métodos , Exposición Profesional , Quirófanos/normas , Tonsilectomía/métodos , Niño , Estudios Transversales , Humanos
7.
Ann Work Expo Health ; 64(1): 96-105, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786604

RESUMEN

This study experimentally evaluates the performance of different sorbent tubes for sampling acetone vapor in workplace air. A dynamic atmosphere system produced an acetone alone and a mixture with other analytes containing ~73, 483, and 1898 µg acetone mass loading at 25, 50, and 75% relative humidity (RH) at 25°C. Sorbent samples were analyzed in accordance with OSHA Method 69 (Carbosieve S-III) and NMAM 1501, modified to use Anasorb 747 sorbent. Both methods were modified to include the additional analytes. Additional extraction procedures with and without 1% dimethylformamide and anhydrous magnesium sulfate were included in the modified NMAM 1501 using Anasorb 747. Silica gel sorbent tubes analyzed according to NMAM 2027 were included. There were significant reductions in the recovery of acetone from both Anasorb 747 and Carbosieve S-III collected from air at 75% RH, relative to collection at 25 or 50% RH at very low loading compared with that of samples collected at mid to high loading. Silica gel provided a consistent recovery of acetone at all RHs and in the presence of other chemical interferences at 75% RH. The likely cause of mass dependence may arise from the humidity effect on acetone adsorption onto both beaded active carbon and carbon molecular sieve either in sampling or in analysis. The present study confirms not only previous observations but also adds to the literature showing carbonaceous sorbents are not well suited for sampling ketones at high humidity and low concentration.


Asunto(s)
Acetona/análisis , Contaminantes Ocupacionales del Aire/análisis , Humedad , Exposición Profesional/análisis , Lugar de Trabajo , Adsorción
8.
J Occup Med Toxicol ; 13: 12, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619075

RESUMEN

BACKGROUND: Operating room personnel have the potential to be exposed to surgical smoke, the by-product of using electrocautery or laser surgical device, on a daily basis. Surgical smoke is made up of both biological by-products and chemical pollutants that have been shown to cause eye, skin and pulmonary irritation. METHODS: In this study, surgical smoke was collected in real time in cell culture media by using an electrocautery surgical device to cut and coagulate human breast tissues. Airborne particle number concentration and particle distribution were determined by direct reading instruments. Airborne concentration of selected volatile organic compounds (VOCs) were determined by evacuated canisters. Head space analysis was conducted to quantify dissolved VOCs in cell culture medium. Human small airway epithelial cells (SAEC) and RAW 264.7 mouse macrophages (RAW) were exposed to surgical smoke in culture media for 24 h and then assayed for cell viability, lactate dehydrogenase (LDH) and superoxide production. RESULTS: Our results demonstrated that surgical smoke-generated from human breast tissues induced cytotoxicity and LDH increases in both the SAEC and RAW. However, surgical smoke did not induce superoxide production in the SAEC or RAW. CONCLUSION: These data suggest that the surgical smoke is cytotoxic in vitro and support the previously published data that the surgical smoke may be an occupational hazard to healthcare workers.

9.
J Occup Environ Hyg ; 15(4): 351-360, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29333991

RESUMEN

The objective of this present study was to evaluate the performance of a portable gas chromatograph-photoionization detector (GC-PID), under various test conditions to determine if it could be used in occupational settings. A mixture of 7 volatile organic compounds (VOCs)-acetone, ethylbenzene, methyl isobutyl ketone, toluene, m-xylene, p-xylene, and o-xylene-was selected because its components are commonly present in paint manufacturing industries. A full-factorial combination of 4 concentration levels (exposure scenarios) of VOC mixtures, 3 different temperatures (25°C, 30°C, and 35°C), and 3 relative humidities (RHs; 25%, 50%, and 75%) was conducted in a full-size controlled environmental chamber. Three repetitions were conducted for each test condition allowing for estimation of accuracy. Time-weighted average exposure data were collected using solid sorbent tubes (Anasorb 747, SKC Inc.) as the reference sampling medium. Calibration curves of Frog-4000 using the dry gases showed R2 > 0.99 for all analytes except for toluene (R2 = 0.97). Frog-4000 estimates within a test condition showed good consistency for the performance of repeated measurement. However, there was ∼41-64% reduction in the analysis of polar acetone with 75% RH relative to collection at 25% RH. Although Frog-4000 results correlated well with solid sorbent tubes (r = 0.808-0.993, except for toluene) most of the combinations regardless of analyte did not meet the <25% accuracy criterion recommended by NIOSH. The effect of chromatographic co-elution can be seen with m, p-xylene when the results are compared to the sorbent tube sampling technique with GC-flame ionization detector. The results indicated an effect of humidity on the quantification of the polar compounds that might be attributed to the pre-concentrator placed in the selected GC-PID. Further investigation may resolve the humidity effect on sorbent trap with micro GC pre-concentrator when water vapor is present. Although this instrument does not fulfill the accuracy criterion specified in the NIOSH technical report No. 2012-162, it can be used as a screening tool for range finding monitoring with dry gases calibration in the occupational setting rather than compliance monitoring.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Cromatografía de Gases/instrumentación , Compuestos Orgánicos Volátiles/análisis , Humedad , Temperatura
10.
J Occup Environ Hyg ; 15(4): 341-350, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29283318

RESUMEN

This experimental study aimed to evaluate airborne particulates and volatile organic compounds (VOCs) from surgical smoke when a local exhaust ventilation (LEV) system is in place. Surgical smoke was generated from human tissue in an unoccupied operating room using an electrocautery surgical device for 15 min with 3 different test settings: (1) without LEV control; (2) control with a wall irrigation suction unit with an in-line ultra-low penetration air filter; and (3) control with a smoke evacuation system. Flow rate of LEVs was approximately 35 L/min and suction was maintained within 5 cm of electrocautery interaction site. A total of 6 experiments were conducted. Particle number and mass concentrations were measured using direct reading instruments including a condensation particle counter (CPC), a light-scattering laser photometer (DustTrak DRX), a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS), and a viable particle counter. Selected VOCs were collected using evacuated canisters using grab, personal and area sampling techniques. The largest average particle and VOCs concentrations were found in the absence of LEV control followed by LEV controls. Average ratios of LEV controls to without LEV control ranged 0.24-0.33 (CPC), 0.28-0.39 (SMPS), 0.14-0.31 (DustTrak DRX), and 0.26-0.55 (APS). Ethanol and isopropyl alcohol were dominant in the canister samples. Acetaldehyde, acetone, acetonitrile, benzene, hexane, styrene, and toluene were detected but at lower concentrations (<500 µg/m3) and concentrations of the VOCs were much less than the National Institute for Occupational Safety and Health recommended exposure limit values. Utilization of the LEVs for surgical smoke control can significantly reduce but not completely eliminate airborne particles and VOCs.


Asunto(s)
Electrocoagulación , Material Particulado/análisis , Humo/prevención & control , Ventilación/métodos , Compuestos Orgánicos Volátiles/análisis , Contaminantes Ocupacionales del Aire/análisis , Humanos , Exposición Profesional/prevención & control , Humo/análisis
11.
Atmosphere (Basel) ; 8(10): 182, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29093969

RESUMEN

The US Environmental Protection Agency (EPA) and other federal agencies face a number of challenges in interpreting and reconciling short-duration (seconds to minutes) readings from mobile and handheld air sensors with the longer duration averages (hours to days) associated with the National Ambient Air Quality Standards (NAAQS) for the criteria pollutants-particulate matter (PM), ozone, carbon monoxide, lead, nitrogen oxides, and sulfur oxides. Similar issues are equally relevant to the hazardous air pollutants (HAPs) where chemical-specific health effect reference values are the best indicators of exposure limits; values which are often based on a lifetime of continuous exposure. A multi-agency, staff-level Air Sensors Health Group (ASHG) was convened in 2013. ASHG represents a multi-institutional collaboration of Federal agencies devoted to discovery and discussion of sensor technologies, interpretation of sensor data, defining the state of sensor-related science across each institution, and provides consultation on how sensors might effectively be used to meet a wide range of research and decision support needs. ASHG focuses on several fronts: improving the understanding of what hand-held sensor technologies may be able to deliver; communicating what hand-held sensor readings can provide to a number of audiences; the challenges of how to integrate data generated by multiple entities using new and unproven technologies; and defining best practices in communicating health-related messages to various audiences. This review summarizes the challenges, successes, and promising tools of those initial ASHG efforts and Federal agency progress on crafting similar products for use with other NAAQS pollutants and the HAPs. NOTE: The opinions expressed are those of the authors and do not necessary represent the opinions of their Federal Agencies or the US Government. Mention of product names does not constitute endorsement.

12.
J Occup Environ Hyg ; 13(11): D201-7, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27314444

RESUMEN

Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.


Asunto(s)
Minas de Carbón , Exposición por Inhalación/análisis , Exposición Profesional/análisis , Cuarzo/análisis , Carbonato de Calcio/química , Polvo , Humanos , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
13.
Aerosol Sci Technol ; 50(1): 76-87, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26834310

RESUMEN

The collection efficiencies of commonly used membrane air sampling filters in the ultrafine particle size range were investigated. Mixed cellulose ester (MCE; 0.45, 0.8, 1.2, and 5 µm pore sizes), polycarbonate (0.4, 0.8, 2, and 5 µm pore sizes), polytetrafluoroethylene (PTFE; 0.45, 1, 2, and 5 µm pore sizes), polyvinyl chloride (PVC; 0.8 and 5 µm pore sizes), and silver membrane (0.45, 0.8, 1.2, and 5 µm pore sizes) filters were exposed to polydisperse sodium chloride (NaCl) particles in the size range of 10-400 nm. Test aerosols were nebulized and introduced into a calm air chamber through a diffusion dryer and aerosol neutralizer. The testing filters (37 mm diameter) were mounted in a conductive polypropylene filter-holder (cassette) within a metal testing tube. The experiments were conducted at flow rates between 1.7 and 11.2 l min-1. The particle size distributions of NaCl challenge aerosol were measured upstream and downstream of the test filters by a scanning mobility particle sizer (SMPS). Three different filters of each type with at least three repetitions for each pore size were tested. In general, the collection efficiency varied with airflow, pore size, and sampling duration. In addition, both collection efficiency and pressure drop increased with decreased pore size and increased sampling flow rate, but they differed among filter types and manufacturer. The present study confirmed that the MCE, PTFE, and PVC filters have a relatively high collection efficiency for challenge particles much smaller than their nominal pore size and are considerably more efficient than polycarbonate and silver membrane filters, especially at larger nominal pore sizes.

14.
J Occup Environ Hyg ; 13(2): D16-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26375614

RESUMEN

The objective of this article is to compare and characterize nylon, polypropylene (PP), and polyvinyl chloride (PVC) membrane filters that might be used to replace the vinyl/acrylic co-polymer (DM-450) filter currently used in the Mine Safety and Health Administration (MSHA) P-7 method (Quartz Analytical Method) and the National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods 7603 method (QUARTZ in coal mine dust, by IR re-deposition). This effort is necessary because the DM-450 filters are no longer commercially available. There is an impending shortage of DM-450 filters. For example, the MSHA Pittsburgh laboratory alone analyzes annually approximately 15,000 samples according to the MSHA P-7 method that requires DM-450 filters. Membrane filters suitable for on-filter analysis should have high infrared (IR) transmittance in the spectral region 600-1000 cm(-1). Nylon (47 mm, 0.45 µm pore size), PP (47 mm, 0.45 µm pore size), and PVC (47 mm, 5 µm pore size) filters meet this specification. Limits of detection and limits of quantification were determined from Fourier transform infrared spectroscopy (FTIR) measurements of blank filters. The average measured quartz mass and coefficient of variation were determined from test filters spiked with respirable α-quartz following MSHA P-7 and NIOSH 7603 methods. Quartz was also quantified in samples of respirable coal dust on each test filter type using the MSHA and NIOSH analysis methods. The results indicate that PP and PVC filters may replace the DM-450 filters for quartz measurement in coal dust by FTIR. PVC filters of 5 µm pore size seemed to be suitable replacement although their ability to retain small particulates should be checked by further experiment.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Monitoreo del Ambiente/instrumentación , Membranas Artificiales , Cuarzo/análisis , Minas de Carbón , Filtración/instrumentación , National Institute for Occupational Safety and Health, U.S. , Espectrofotometría Infrarroja , Estados Unidos
15.
J Occup Environ Hyg ; 11(12): D215-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25204985

RESUMEN

The objective of the present study is to quantify quartz mass in coal dust deposited on the internal cassette surface of respirable size-selective samplers. Coal dust was collected with four different respirable size-selective samplers (10 mm Dorr-Oliver nylon [Sensidyne, St. Petersburg, Fla.], SKC Aluminum [SKC Inc., Eighty Four, Pa.], BGI4L [BGI USA Inc., Waltham, Mass.], and GK2.69 cyclones [BGI USA Inc.]) with two different cassette types (polystyrene and static-dissipative polypropylene cassettes). The coal dust was aerosolized in a calm air chamber by using a fluidized bed aerosol generator without neutralization under the assumption that the procedure is similar to field sampling conditions. The mass of coal dust was measured gravimetrically and quartz mass was determined by Fourier transform infrared spectroscopy according to the National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods, Method 7603. The mass fractions of the total quartz sample on the internal cassette surface are significantly different between polystyrene and static-dissipative cassettes for all cyclones (p < 0.05). No consistent relationship between quartz mass on cassette internal surface and coal dust filter mass was observed. The BGI4L cyclone showed a higher (but not significantly) and the GK2.69 cyclone showed a significantly lower (p < 0.05) internal surface deposit quartz mass fraction for polystyrene cassettes compared to other cyclones. This study confirms previous observations that the interior surface deposits in polystyrene cassettes attached to cyclone pre-selectors can be a substantial part of the sample, and therefore need to be included in any analysis for accurate exposure assessment. On the other hand, the research presented here supports the position that the internal surface deposits in static-dissipative cassettes used with size-selective cyclones are negligible and that it is only necessary to analyze the filter catch.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Carbón Mineral/análisis , Polvo/análisis , Monitoreo del Ambiente/instrumentación , Cuarzo/análisis , Contaminantes Ocupacionales del Aire/química , Filtración/instrumentación , Tamaño de la Partícula
16.
Ann Occup Hyg ; 58(8): 1006-17, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25053700

RESUMEN

Lee et al. (Evaluation of pump pulsation in respirable size-selective sampling: part I. Pulsation measurements. Ann Occup Hyg 2014a;58:60-73) introduced an approach to measure pump pulsation (PP) using a real-world sampling train, while the European Standards (EN) (EN 1232-1997 and EN 12919-1999) suggest measuring PP using a resistor in place of the sampler. The goal of this study is to characterize PP according to both EN methods and to determine the relationship of PP between the published method (Lee et al., 2014a) and the EN methods. Additional test parameters were investigated to determine whether the test conditions suggested by the EN methods were appropriate for measuring pulsations. Experiments were conducted using a factorial combination of personal sampling pumps (six medium- and two high-volumetric flow rate pumps), back pressures (six medium- and seven high-flow rate pumps), resistors (two types), tubing lengths between a pump and resistor (60 and 90 cm), and different flow rates (2 and 2.5 l min(-1) for the medium- and 4.4, 10, and 11.2 l min(-1) for the high-flow rate pumps). The selection of sampling pumps and the ranges of back pressure were based on measurements obtained in the previous study (Lee et al., 2014a). Among six medium-flow rate pumps, only the Gilian5000 and the Apex IS conformed to the 10% criterion specified in EN 1232-1997. Although the AirChek XR5000 exceeded the 10% limit, the average PP (10.9%) was close to the criterion. One high-flow rate pump, the Legacy (PP=8.1%), conformed to the 10% criterion in EN 12919-1999, while the Elite12 did not (PP=18.3%). Conducting supplemental tests with additional test parameters beyond those used in the two subject EN standards did not strengthen the characterization of PPs. For the selected test conditions, a linear regression model [PPEN=0.014+0.375×PPNIOSH (adjusted R2=0.871)] was developed to determine the PP relationship between the published method (Lee et al., 2014a) and the EN methods. The 25% PP criterion recommended by Lee et al. (2014a), average value derived from repetitive measurements, corresponds to 11% PPEN. The 10% pass/fail criterion in the EN Standards is not based on extensive laboratory evaluation and would unreasonably exclude at least one pump (i.e. AirChek XR5000 in this study) and, therefore, the more accurate criterion of average 11% from repetitive measurements should be substituted. This study suggests that users can measure PP using either a real-world sampling train or a resistor setup and obtain equivalent findings by applying the model herein derived. The findings of this study will be delivered to the consensus committees to be considered when those standards, including the EN 1232-1997, EN 12919-1999, and ISO 13137-2013, are revised.


Asunto(s)
Movimientos del Aire , Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente/instrumentación , Diseño de Equipo/normas , Monitoreo del Ambiente/normas , Europa (Continente) , Humanos , Exposición por Inhalación/análisis , Agencias Internacionales , Exposición Profesional/prevención & control , Tamaño de la Partícula , Respiración
17.
Sci Total Environ ; 409(17): 3124-8, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21621248

RESUMEN

The objective of this research was to identify the influence of applied force (AF) and the compressive strength (CS) of concrete on particle exposure concentrations during concrete cutting processes. Five cutting conditions were selected with AF varied between 9.8 and 49 N and CS varied between 2500 and 6000 psi. For each selected cutting condition, the measured total dust concentrations (C(tot)) were used to further determine the corresponding three health-related exposure concentrations of the inhalable (C(inh)), thoracic (C(thor)), and respirable fraction (C(res)). Results show that particle size distribution was consistently in a bimodal form under all selected cutting conditions. An increase in CS resulted in an increase in coarse particle generations leading to an increase in the four measured particle exposure levels. An increase in AF resulted in an increase in exposure concentrations with a higher fraction of fine particles (i.e., C(tho) and C(res)) However, for particle exposure concentrations with a higher fraction of coarse particles (i.e., C(tot) and C(inh)), an increase in AF resulted in an initial increase, followed by a decrease in concentration. Finally, the above inferences were further confirmed through the use of fixed-effect models to determine the influence of both CS and AF on the four exposure concentrations. These results provide a reference for industries to initiate appropriate control strategies to reduce the exposure levels encountered by workers.


Asunto(s)
Contaminantes Atmosféricos/análisis , Fuerza Compresiva , Materiales de Construcción/análisis , Exposición por Inhalación/análisis , Materiales Manufacturados , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , Humanos , Exposición por Inhalación/estadística & datos numéricos , Ensayo de Materiales , Exposición Profesional/análisis , Exposición Profesional/estadística & datos numéricos , Tamaño de la Partícula
18.
J Hazard Mater ; 178(1-3): 306-11, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20153113

RESUMEN

This paper establishes particulate exposure predictive models based on vibration measurements under various concrete drilling conditions. The whole study was conducted in an exposure chamber using a full-scale mockup of concrete drilling simulator to simulate six drilling conditions. For each drilling condition, the vibration of the three orthogonal axes (i.e., a(x), a(y), and a(z)) was measured from the hand tool. Particulate exposure concentrations to the total suspended particulate (C(TSP)), PM(10) (C(PM10)), and PM(2.5) (C(PM2.5)) were measured at the downwind side of the drilling simulator. Empirical models for predicting C(TSP), C(PM10) and C(PM2.5) were done based on measured a(x), a(y), and a(z) using the generalized additive model. Good agreement between measured aerosol exposures and vibrations was found with R(2)>0.969. Our results also suggest that a(x) was mainly contributed by the abrasive wear. On the other hand, a(y) and a(z) were mainly contributed by both the impact wear and brittle fracture wear. The approach developed from the present study has the potential to provide a cheaper and convenient method for assessing aerosol exposures from various emission sources, particularly when conducting conventional personal aerosol samplings are not possible in the filed.


Asunto(s)
Aerosoles , Exposición por Inhalación/estadística & datos numéricos , Exposición Profesional/estadística & datos numéricos , Vibración , Mano/fisiología , Humanos , Modelos Estadísticos , Tamaño de la Partícula , Material Particulado , Valor Predictivo de las Pruebas
19.
J Hazard Mater ; 176(1-3): 389-94, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20006439

RESUMEN

In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage.


Asunto(s)
Exposición por Inhalación/análisis , Cuarzo/análisis , Lugar de Trabajo , Aerosoles , Polvo/análisis , Filtración , Humanos , Exposición Profesional , Dióxido de Silicio/análisis , Difracción de Rayos X
20.
J Environ Monit ; 11(8): 1523-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19657538

RESUMEN

This study used a full scale mockup of a concrete drilling simulator to simulate drilling processes in an exposure chamber. Six drilling conditions were selected with rotating speeds and drill bit sizes varied from 265 to 587 rpm and 16 to 32 mm, respectively. For each drilling condition, the emitted noise power spectrums were measured and dust exposure concentrations of the fractions of the total (C(tot)), inhalable (C(inh)), thoracic (C(tho)), and respirable (C(res)) were estimated. We find that neither the resultant dust exposure levels nor the noise levels can be explained simply by the involved drilling mechanical energy. By dividing the emitted noise power spectrums into the high and low frequency noise (i.e., W(H) and W(L)), we find that 86.3%, 85.6%, 81.5%, and 77.6% variations of C(tot), C(inh), C(tho), and C(res) could be explained by the combination of W(H) and W(L), respectively. We also find that the emissions of coarse particles and W(L) were possibly contributed by two mechanisms of the impact wear and brittle fracture wear, whereas fine particles and W(H) could be contributed by the mechanism of abrasive wear. Although the predictive models obtained from this study could not be directly used in other dust emission sources, the developed methodology would be beneficial to industries in the future for aerosol exposure assessment, particularly when conducting conventional personal aerosol samplings is not possible in the field.


Asunto(s)
Aerosoles/análisis , Materiales de Construcción/análisis , Exposición por Inhalación/análisis , Modelos Químicos , Ruido en el Ambiente de Trabajo , Material Particulado/análisis , Contaminantes Ocupacionales del Aire/análisis , Cámaras de Exposición Atmosférica , Exposición Profesional/análisis , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA