Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Artif Intell Med ; 144: 102666, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37783534

RESUMEN

The COVID-19 pandemic highlights the need for effective and non-intrusive methods to monitor the well-being of elderly individuals in their homes, especially for early detection of potential viral infections. Conspicuously, the present paper develops a Multi-scaled Long Short Term Memory (Ms-LSTM) model for the routine health monitoring of elderly patients to detect COVID-19. The proposed method offers home-based health diagnostics through urine analysis by leveraging the IoT-Fog-Cloud paradigm. Mainly, the proposed model constitutes a four-layered architecture: data acquisition, fog layer, cloud layer, and interface layer. Each layer serves distinct functionalities and provides specific services, thereby collectively enhancing the overall effectiveness of the model. The statistical results of the study demonstrate the superior performance of the proposed Ms-LSTM model in comparison to state-of-the-art methods, including Artificial Neural Networks (ANN), K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), Random Forest, and LSTM. Further, the proposed model attains a mean temporal efficiency of 39.23 seconds. It exhibits high reliability (92.97%), stability (70.06%), and predictive accuracy (93.25%).


Asunto(s)
Aparatos Sanitarios , COVID-19 , Humanos , Pandemias , Reproducibilidad de los Resultados , Poder Psicológico
2.
Nat Commun ; 14(1): 6435, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833252

RESUMEN

We investigated the developmental changes in high-frequency oscillation (HFO) and Modulation Index (MI) - the coupling measure between HFO and slow-wave phase. We generated normative brain atlases, using subdural EEG signals from 8251 nonepileptic electrode sites in 114 patients (ages 1.0-41.5 years) who achieved seizure control following resective epilepsy surgery. We observed a higher MI in the occipital lobe across all ages, and occipital MI increased notably during early childhood. The cortical areas exhibiting MI co-growth were connected via the vertical occipital fasciculi and posterior callosal fibers. While occipital HFO rate showed no significant age-association, the temporal, frontal, and parietal lobes exhibited an age-inversed HFO rate. Assessment of 1006 seizure onset sites revealed that z-score normalized MI and HFO rate were higher at seizure onset versus nonepileptic electrode sites. We have publicly shared our intracranial EEG data to enable investigators to validate MI and HFO-centric presurgical evaluations to identify the epileptogenic zone.


Asunto(s)
Ascomicetos , Ondas Encefálicas , Epilepsia , Humanos , Preescolar , Electroencefalografía , Ondas Encefálicas/fisiología , Mapeo Encefálico , Epilepsia/cirugía , Convulsiones
3.
Brain Commun ; 5(2): fcad111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228850

RESUMEN

Alpha waves-posterior dominant rhythms at 8-12 Hz reactive to eye opening and closure-are among the most fundamental EEG findings in clinical practice and research since Hans Berger first documented them in the early 20th century. Yet, the exact network dynamics of alpha waves in regard to eye movements remains unknown. High-gamma activity at 70-110 Hz is also reactive to eye movements and a summary measure of local cortical activation supporting sensorimotor or cognitive function. We aimed to build the first-ever brain atlases directly visualizing the network dynamics of eye movement-related alpha and high-gamma modulations, at cortical and white matter levels. We studied 28 patients (age: 5-20 years) who underwent intracranial EEG and electro-oculography recordings. We measured alpha and high-gamma modulations at 2167 electrode sites outside the seizure onset zone, interictal spike-generating areas and MRI-visible structural lesions. Dynamic tractography animated white matter streamlines modulated significantly and simultaneously beyond chance, on a millisecond scale. Before eye-closure onset, significant alpha augmentation occurred at the occipital and frontal cortices. After eye-closure onset, alpha-based functional connectivity was strengthened, while high gamma-based connectivity was weakened extensively in both intra-hemispheric and inter-hemispheric pathways involving the central visual areas. The inferior fronto-occipital fasciculus supported the strengthened alpha co-augmentation-based functional connectivity between occipital and frontal lobe regions, whereas the posterior corpus callosum supported the inter-hemispheric functional connectivity between the occipital lobes. After eye-opening offset, significant high-gamma augmentation and alpha attenuation occurred at occipital, fusiform and inferior parietal cortices. High gamma co-augmentation-based functional connectivity was strengthened, whereas alpha-based connectivity was weakened in the posterior inter-hemispheric and intra-hemispheric white matter pathways involving central and peripheral visual areas. Our results do not support the notion that eye closure-related alpha augmentation uniformly reflects feedforward or feedback rhythms propagating from lower to higher order visual cortex, or vice versa. Rather, proactive and reactive alpha waves involve extensive, distinct white matter networks that include the frontal lobe cortices, along with low- and high-order visual areas. High-gamma co-attenuation coupled to alpha co-augmentation in shared brain circuitry after eye closure supports the notion of an idling role for alpha waves during eye closure. These normative dynamic tractography atlases may improve understanding of the significance of EEG alpha waves in assessing the functional integrity of brain networks in clinical practice; they also may help elucidate the effects of eye movements on task-related brain network measures observed in cognitive neuroscience research.

4.
Neuroimage ; 270: 119954, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36828156

RESUMEN

We built normative brain atlases that animate millisecond-scale intra- and inter-hemispheric white matter-level connectivity dynamics supporting object recognition and speech production. We quantified electrocorticographic modulations during three naming tasks using event-related high-gamma activity from 1,114 nonepileptogenic intracranial electrodes (i.e., non-lesional areas unaffected by epileptiform discharges). Using this electrocorticography data, we visualized functional connectivity modulations defined as significant naming-related high-gamma modulations occurring simultaneously at two sites connected by direct white matter streamlines on diffusion-weighted imaging tractography. Immediately after stimulus onset, intra- and inter-hemispheric functional connectivity enhancements were confined mainly across modality-specific perceptual regions. During response preparation, left intra-hemispheric connectivity enhancements propagated in a posterior-to-anterior direction, involving the left precentral and prefrontal areas. After overt response onset, inter- and intra-hemispheric connectivity enhancements mainly encompassed precentral, postcentral, and superior-temporal (STG) gyri. We found task-specific connectivity enhancements during response preparation as follows. Picture naming enhanced activity along the left arcuate fasciculus between the inferior-temporal and precentral/posterior inferior-frontal (pIFG) gyri. Nonspeech environmental sound naming augmented functional connectivity via the left inferior longitudinal and fronto-occipital fasciculi between the medial-occipital and STG/pIFG. Auditory descriptive naming task enhanced usage of the left frontal U-fibers, involving the middle-frontal gyrus. Taken together, the commonly observed network enhancements include inter-hemispheric connectivity optimizing perceptual processing exerted in each hemisphere, left intra-hemispheric connectivity supporting semantic and lexical processing, and inter-hemispheric connectivity for symmetric oral movements during overt speech. Our atlases improve the currently available models of object recognition and speech production by adding neural dynamics via direct intra- and inter-hemispheric white matter tracts.


Asunto(s)
Lenguaje , Habla , Humanos , Habla/fisiología , Mapeo Encefálico/métodos , Encéfalo , Percepción Visual/fisiología
5.
Diagn Microbiol Infect Dis ; 105(3): 115879, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36657360

RESUMEN

Tuberculosis is predicted to be a major undocumented cause of mortality in children. This systematic review with meta-analysis assessed the diagnostic accuracy of Lipoarabinomannan antigen testing (FujiLAM) in urine in HIV-negative children with TB-like signs and symptoms. PubMed, EMBASE, Scopus, Cochrane database and Google Scholar search engine were searched to identify relevant studies from earliest records to June 2022 without any language restriction. Three studies were finalized, patients were recruited from Africa and Haiti. Among microbiologically confirmed pediatric TB patients, pooled sensitivity and specificity of FujiLAM (with 95% CI) was 52% (35%-69%) and 90% (85%-93%) respectively. In both clinical (unconfirmed) and microbiological confirmed TB cases, sensitivity reduced to 24% (16%-34%) while specificity was 91%(80%-97%). We concluded that due to ease in obtaining urine sample, FujiLAM can be used as point-of-care TB test in HIV negative children, however more data from different population is needed.


Asunto(s)
Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis , Humanos , Niño , Sistemas de Atención de Punto , Tuberculosis/diagnóstico , Tuberculosis/epidemiología , Lipopolisacáridos , Sensibilidad y Especificidad , Infecciones por VIH/diagnóstico , Pruebas Diagnósticas de Rutina
6.
J Pediatr Hematol Oncol ; 45(3): e406-e409, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36044309

RESUMEN

DICER1 syndrome is a rare inherited tumor predisposition syndrome associated with an increased risk for several malignant and benign tumors. We present a patient with pineal parenchymal tumor of intermediate differentiation who was found to have a germline pathogenic variant in DICER1 gene. Pineoblastoma is a known DICER1-related tumor; however, the association between pineal parenchymal tumor of intermediate differentiation and DICER1 mutation is rare with only 1 recent large molecular study that has reported this association. This report adds to the evolving tumor spectrum of DICER1 and highlights the importance of molecular evaluation of pediatric brain tumors, for both therapeutic decisions and long-term surveillance.


Asunto(s)
Neoplasias Encefálicas , Cuerpo Ciliar , ARN Helicasas DEAD-box , Predisposición Genética a la Enfermedad , Glándula Pineal , Pinealoma , Ribonucleasa III , Neoplasias de la Úvea , Humanos , Pinealoma/diagnóstico por imagen , Pinealoma/genética , Pinealoma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glándula Pineal/diagnóstico por imagen , Glándula Pineal/patología , Ribonucleasa III/genética , ARN Helicasas DEAD-box/genética , Femenino , Adolescente , Síndrome , Cuerpo Ciliar/patología , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología , Linaje
7.
J Pediatr Neurosci ; 17(Suppl 1): S44-S53, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36388003

RESUMEN

Over the past 30 years, advances in endoscopic technology and advancing interest in the benefits of minimally invasive approaches for craniofacial surgery have resulted in these techniques becoming a part of the standard of care in the treatment of craniosynostosis. In this review, we discuss the evolution and adoption of endoscopic-assisted strip craniectomy procedures. In addition to reviewing the studies describing various nuances and modifications to minimally invasive strip craniectomy, attention to comparisons in outcomes between traditional or open cranial vault reconstructions and endoscopic-assisted techniques is highlighted for different craniosynostosis diagnoses.

8.
Environ Sci Pollut Res Int ; 29(57): 86796-86814, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35794337

RESUMEN

Disasters cause catastrophic events that lead to fatalities, damage, and social disturbance. Hydrological and meteorological disasters have an enormous impact worldwide. The impact of IT (Information Technology) in managing these disasters has been neglected. This study is intended to reveal the worldwide research status of hydro-meteorological disasters and various ITs in hazard management through a descriptive and critical review of existing literature. The bibliographic data is collected from Scopus and PATSTAT from 2010 to 2019. This study provides a basic framework for data acquisition, literature selection, and analysis of published documents. A descriptive review of selected literature is conducted to reveal the growth of publications w.r.t. year-wise reported hazards, citation analysis of published documents, patent analysis, geographical status of different hazards research, most influential journals, institutions, and documents. Further, critical review is conducted to analyze the environmental issues, recent developments in ICT-based disaster management, resilience concerns, key research areas, and challenges to implement ICT in disaster management. The present analysis depicts the importance of information technology in disaster management and offers guidance for future disaster management work supported by IT.


Asunto(s)
Planificación en Desastres , Desastres , Bibliometría , Publicaciones , Administración de la Seguridad
9.
Comput Electr Eng ; 101: 107948, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35495094

RESUMEN

The COVID-19 outbreak has led to a substantial loss of human life throughout the world and has a tremendous impact on healthcare services. Industry 4.0 technologies have established effective supply chain management towards the fulfillment of customized demands in the healthcare field. In addition, the internet of things, artificial intelligence, big data analytics, and 3D printing have been extensively used to combat the COVID-19 pandemic and assist in providing value-added services in the healthcare sector. Henceforth, this paper presents a scientometric analysis on the literature of aforementioned Industry 4.0 technologies in the context of COVID-19. It provides extensive insights into co-citation and co-occurrence analysis of high cited publications, participating countries, influential authors, prolific journals, and keywords using the CiteSpace tool. The analyses reveal that China has produced the highest research outputs, although India is the most collaborative country in this field. The current research hotspots include supply chain, 4D printing, and social distancing technologies. Furthermore, it explores emerging trends, intellectual structure of publications, research frontiers, and potential research directions for further work in the Industry 4.0 assisted healthcare domain.

10.
Neuroimage ; 254: 119126, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35331870

RESUMEN

OBJECTIVE: Our daily activities require frequent switches among competing responses at the millisecond time scale. We determined the spatiotemporal characteristics and functional significance of rapid, large-scale brain network dynamics during task switching. METHODS: This cross-sectional study investigated patients with drug-resistant focal epilepsy who played a Lumosity cognitive flexibility training game during intracranial electroencephalography (iEEG) recording. According to a given task rule, unpredictably switching across trials, participants had to swipe the screen in the direction the stimulus was pointing or moving. Using this data, we described the spatiotemporal characteristics of iEEG high-gamma augmentation occurring more intensely during switch than repeat trials, unattributable to the effect of task rule (pointing or moving), within-stimulus congruence (the direction of stimulus pointing and moving was same or different in a given trial), or accuracy of an immediately preceding response. Diffusion-weighted imaging (DWI) tractography determined whether distant cortical regions showing enhanced activation during task switch trials were directly connected by white matter tracts. Trial-by-trial iEEG analysis deduced whether the intensity of task switch-related high-gamma augmentation was altered through practice and whether high-gamma amplitude predicted the accuracy of an upcoming response among switch trials. RESULTS: The average number of completed trials during five-minute gameplay was 221.4 per patient (range: 171-285). Task switch trials increased the response times, whereas later trials reduced them. Analysis of iEEG signals sampled from 860 brain sites effectively elucidated the distinct spatiotemporal characteristics of task switch, task rule, and post-error-specific high-gamma modulations. Post-cue, task switch-related high-gamma augmentation was initiated in the right calcarine cortex after 260 ms, right precuneus after 330 ms, right entorhinal after 420 ms, and bilateral anterior middle-frontal gyri after 450 ms. DWI tractography successfully showed the presence of direct white matter tracts connecting the right visual areas to the precuneus and anterior middle-frontal regions but not between the right precuneus and anterior middle-frontal regions. Task-related high-gamma amplitudes in later trials were reduced in the calcarine, entorhinal and anterior middle-frontal regions, but increased in the precuneus. Functionally, enhanced post-cue precuneus high-gamma augmentation improved the accuracy of subsequent responses among switch trials. CONCLUSIONS: Our multimodal analysis uncovered two temporally and functionally distinct network dynamics supporting task switching. High-gamma augmentation in the visual-precuneus pathway may reflect the neural process facilitating an attentional shift to a given updated task rule. High-gamma activity in the visual-dorsolateral prefrontal pathway, rapidly reduced through practice, may reflect the cost of executing appropriate stimulus-response translation.


Asunto(s)
Encéfalo , Epilepsia Refractaria , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Estudios Transversales , Electrocorticografía/métodos , Electroencefalografía/métodos , Humanos , Tiempo de Reacción/fisiología
11.
Telemat Inform ; 69: 101796, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35282387

RESUMEN

The prevalence of severe infectious diseases has become a major global health concern. Currently, the COVID-19 outbreak has spread across the world and has created an unprecedented humanitarian crisis. The proliferation of novel viruses has put traditional health systems under immense pressure and posed several serious issues. Henceforth, early detection, identification, rapid testing, and advanced surveillance systems are required to address public health emergencies. However, Information and Communication Technology (ICT) tackles several issues raised by this pandemic and significantly improves the quality of services in the health care sector. This paper presents an ICT-assisted scientometric analysis of infectious diseases, namely, airborne, food & waterborne, fomite-borne, sexually transmitted illnesses, and vector-borne illnesses. It assesses the international research status of this field in terms of citation structure, prolific journals, and country contributions. It has used the CiteSpace tool to address the visualization needs and in-depth insights of scientific literature to pinpoint core hotspots, research frontiers, emerging research areas, and ICT trends. The research finding reveals that mobile apps, telemedicine, and artificial intelligence technologies have greater scope to reduce the threats of infectious diseases. COVID-19, influenza, HIV, and malaria viruses have been identified as research hotspots whereas COVID-19, contact tracing applications, security and privacy concerns about users' data are the recent challenges in this field that need to address. The United States has produced higher research output in all domains of infectious diseases. Furthermore, it explores the co-occurrence network analysis and intellectual landscape of each domain of infectious diseases. It provides potential research directions and insightful clues to researchers and the academic fraternity for further research.

12.
Brain ; 145(2): 517-530, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35313351

RESUMEN

This prospective study determined the use of intracranially recorded spectral responses during naming tasks in predicting neuropsychological performance following epilepsy surgery. We recruited 65 patients with drug-resistant focal epilepsy who underwent preoperative neuropsychological assessment and intracranial EEG recording. The Clinical Evaluation of Language Fundamentals evaluated the baseline and postoperative language function. During extra-operative intracranial EEG recording, we assigned patients to undergo auditory and picture naming tasks. Time-frequency analysis determined the spatiotemporal characteristics of naming-related amplitude modulations, including high gamma augmentation at 70-110 Hz. We surgically removed the presumed epileptogenic zone based on the intracranial EEG and MRI abnormalities while maximally preserving the eloquent areas defined by electrical stimulation mapping. The multivariate regression model incorporating auditory naming-related high gamma augmentation predicted the postoperative changes in Core Language Score with r2 of 0.37 and in Expressive Language Index with r2 of 0.32. Independently of the effects of epilepsy and neuroimaging profiles, higher high gamma augmentation at the resected language-dominant hemispheric area predicted a more severe postoperative decline in Core Language Score and Expressive Language Index. Conversely, the model incorporating picture naming-related high gamma augmentation predicted the change in Receptive Language Index with an r2 of 0.50. Higher high gamma augmentation independently predicted a more severe postoperative decline in Receptive Language Index. Ancillary regression analysis indicated that naming-related low gamma augmentation and alpha/beta attenuation likewise independently predicted a more severe Core Language Score decline. The machine learning-based prediction model suggested that naming-related high gamma augmentation, among all spectral responses used as predictors, most strongly contributed to the improved prediction of patients showing a >5-point Core Language Score decline (reflecting the lower 25th percentile among patients). We generated the model-based atlas visualizing sites, which, if resected, would lead to such a language decline. With a 5-fold cross-validation procedure, the auditory naming-based model predicted patients who had such a postoperative language decline with an accuracy of 0.80. The model indicated that virtual resection of an electrical stimulation mapping-defined language site would have increased the relative risk of the Core Language Score decline by 5.28 (95% confidence interval: 3.47-8.02). Especially, that of an electrical stimulation mapping-defined receptive language site would have maximized it to 15.90 (95% confidence interval: 9.59-26.33). In summary, naming-related spectral responses predict neuropsychological outcomes after epilepsy surgery. We have provided our prediction model as an open-source material, which will indicate the postoperative language function of future patients and facilitate external validation at tertiary epilepsy centres.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Complicaciones Cognitivas Postoperatorias , Mapeo Encefálico/métodos , Epilepsia Refractaria/cirugía , Electrocorticografía/métodos , Epilepsia/cirugía , Humanos , Estudios Prospectivos
13.
J Pediatr Hematol Oncol ; 44(2): e576-e579, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33930008

RESUMEN

Posterior fossa ependymomas A confer the worst prognosis among all subtypes. They demonstrate distinct epigenetic changes, which can be targeted with epigenetic modifiers like histone deacetylase inhibitors (Vorinostat). We describe a 3-year-old male diagnosed with a posterior fossa ependymoma who had a number of recurrences requiring multimodal therapy. Molecular analysis demonstrated a BCL-6 corepressor mutation, and methylation profiling matched with posterior fossa ependymomas A. He received craniospinal irradiation and focal boost with Vorinostat. Serial imaging after irradiation revealed a progressively decreasing tumor burden with nearly complete resolution of disease at 15 months. Histone deacetylase inhibitors demonstrate promise in treatment of carefully selected cases of ependymoma.


Asunto(s)
Ependimoma , Inhibidores de Histona Desacetilasas , Preescolar , Terapia Combinada , Ependimoma/genética , Ependimoma/patología , Ependimoma/terapia , Humanos , Masculino , Vorinostat/uso terapéutico
14.
Brain ; 144(11): 3340-3354, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34849596

RESUMEN

During a verbal conversation, our brain moves through a series of complex linguistic processing stages: sound decoding, semantic comprehension, retrieval of semantically coherent words, and overt production of speech outputs. Each process is thought to be supported by a network consisting of local and long-range connections bridging between major cortical areas. Both temporal and extratemporal lobe regions have functional compartments responsible for distinct language domains, including the perception and production of phonological and semantic components. This study provides quantitative evidence of how directly connected inter-lobar neocortical networks support distinct stages of linguistic processing across brain development. Novel six-dimensional tractography was used to intuitively visualize the strength and temporal dynamics of direct inter-lobar effective connectivity between cortical areas activated during each linguistic processing stage. We analysed 3401 non-epileptic intracranial electrode sites from 37 children with focal epilepsy (aged 5-20 years) who underwent extra-operative electrocorticography recording. Principal component analysis of auditory naming-related high-gamma modulations determined the relative involvement of each cortical area during each linguistic processing stage. To quantify direct effective connectivity, we delivered single-pulse electrical stimulation to 488 temporal and 1581 extratemporal lobe sites and measured the early cortico-cortical spectral responses at distant electrodes. Mixed model analyses determined the effects of naming-related high-gamma co-augmentation between connecting regions, age, and cerebral hemisphere on the strength of effective connectivity independent of epilepsy-related factors. Direct effective connectivity was strongest between extratemporal and temporal lobe site pairs, which were simultaneously activated between sentence offset and verbal response onset (i.e. response preparation period); this connectivity was approximately twice more robust than that with temporal lobe sites activated during stimulus listening or overt response. Conversely, extratemporal lobe sites activated during overt response were equally connected with temporal lobe language sites. Older age was associated with increased strength of inter-lobar effective connectivity especially between those activated during response preparation. The arcuate fasciculus supported approximately two-thirds of the direct effective connectivity pathways from temporal to extratemporal auditory language-related areas but only up to half of those in the opposite direction. The uncinate fasciculus consisted of <2% of those in the temporal-to-extratemporal direction and up to 6% of those in the opposite direction. We, for the first time, provided an atlas which quantifies and animates the strength, dynamics, and direction specificity of inter-lobar neural communications between language areas via the white matter pathways. Language-related effective connectivity may be strengthened in an age-dependent manner even after the age of 5.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Conectoma/métodos , Lenguaje , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Adolescente , Atlas como Asunto , Niño , Preescolar , Imagen de Difusión Tensora/métodos , Electrocorticografía , Femenino , Humanos , Masculino , Modelos Neurológicos , Adulto Joven
15.
Epilepsy Behav ; 124: 108363, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34717248

RESUMEN

This retrospective cohort study investigated 53 patients with drug-resistant focal epilepsy and identified factors predictive of long-term satisfaction of patients and families following extraoperative intracranial EEG (iEEG) recording. The mixed model analysis assessed the utility of intracranial EEG (iEEG) predictor variables, including the seizure-onset zone (SOZ), modulation index (MI), and naming-related high-gamma activity. Modulation index, quantifying the coupling between high-frequency activity at >80 Hz and local slow wave at 3-4 Hz, effectively functions as a surrogate marker of the burden of interictal spike-and-slow-wave discharges. The mixed model specifically incorporated 'subtraction-MI', defined as the subtraction of mean z-score normalized MI across all preserved sites from that across all resected sites. Auditory naming-related high-gamma activity at 70-110 Hz is a biomarker to characterize the underlying language and speech function. The model incorporated 'maximum resected high-gamma', defined as the high-gamma percent change largest among sites included in the resected language-dominant hemispheric region. The model also incorporated the clinical and imaging profiles of given patients. The analysis revealed that complete removal of SOZ (p = 0.003) and younger patient age (p = 0.040) were independently associated with greater satisfaction. Neither 'subtraction-MI' nor 'maximum naming-related high-gamma' showed a significant and independent association with long-term satisfaction in our patient cohort. The observed impact of complete resection of SOZ and early surgery can be considered when counseling candidates for epilepsy surgery.

16.
Comput Commun ; 178: 297-306, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518711

RESUMEN

In the current scenario of the COVID-19 pandemic and worldwide health emergency, one of the major challenges is to identify and predict the panic health of persons. The management of panic health and on-time evacuation prevents COVID-19 infection incidences in educational institutions and public places. Therefore, a system is required to predict the infection and suggests a safe evacuation path to people that control panic scenarios with mortality. In this paper, a fog-assisted cyber physical system is introduced to control panic attacks and COVID-19 infection risk in public places. The proposed model uses the concept of physical and cyber space. The physical space helps in real time data collection and transmission of the alert generation to the stakeholders. Cyberspace consists of two spaces, fog space, and cloud-space. The fog-space facilitates panic health and COVID-19 symptoms determination with alert generation for risk-affected areas. Cloud space monitors and predicts the person's panic health and symptoms using the SARIMA model. Furthermore, it also identifies risk-prone regions in the affected place using Geographical Population Analysis. The performance evaluation acknowledges the efficiency related to panic health determination and prediction based on the SARIMA with risks mapping accuracy. The proposed system provides an efficient on time evacuation with priority from risk-affected places that protect people from attacks due to panic and infection caused by COVID-19.

17.
Clin Neurophysiol ; 132(10): 2391-2403, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34454266

RESUMEN

OBJECTIVE: We clarified the clinical and mechanistic significance of physiological modulations of high-frequency broadband cortical activity associated with spontaneous saccadic eye movements during a resting state. METHODS: We studied 30 patients who underwent epilepsy surgery following extraoperative electrocorticography and electrooculography recordings. We determined whether high-gamma activity at 70-110 Hz preceding saccade onset would predict upcoming ocular behaviors. We assessed how accurately the model incorporating saccade-related high-gamma modulations would localize the primary visual cortex defined by electrical stimulation. RESULTS: The dynamic atlas demonstrated transient high-gamma suppression in the striatal cortex before saccade onset and high-gamma augmentation subsequently involving the widespread posterior brain regions. More intense striatal high-gamma suppression predicted the upcoming saccade directed to the ipsilateral side and lasting longer in duration. The bagged-tree-ensemble model demonstrated that intense saccade-related high-gamma modulations localized the visual cortex with an accuracy of 95%. CONCLUSIONS: We successfully animated the neural dynamics supporting saccadic suppression, a principal mechanism minimizing the perception of blurred vision during rapid eye movements. The primary visual cortex per se may prepare actively in advance for massive image motion expected during upcoming prolonged saccades. SIGNIFICANCE: Measuring saccade-related electrocorticographic signals may help localize the visual cortex and avoid misperceiving physiological high-frequency activity as epileptogenic.


Asunto(s)
Epilepsia Refractaria/fisiopatología , Electrocorticografía/métodos , Ritmo Gamma/fisiología , Movimientos Sacádicos/fisiología , Corteza Visual/fisiología , Adolescente , Niño , Preescolar , Epilepsia Refractaria/diagnóstico por imagen , Femenino , Humanos , Masculino , Corteza Visual/diagnóstico por imagen , Adulto Joven
18.
Fluids Barriers CNS ; 18(1): 33, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34289858

RESUMEN

BACKGROUND: Implantation of ventricular catheters (VCs) to drain cerebrospinal fluid (CSF) is a standard approach to treat hydrocephalus. VCs fail frequently due to tissue obstructing the lumen via the drainage holes. Mechanisms driving obstruction are poorly understood. This study aimed to characterize the histological features of VC obstructions and identify links to clinical factors. METHODS: 343 VCs with relevant clinical data were collected from five centers. Each hole on the VCs was classified by degree of tissue obstruction after macroscopic analysis. A subgroup of 54 samples was analyzed using immunofluorescent labelling, histology and immunohistochemistry. RESULTS: 61.5% of the 343 VCs analyzed had tissue aggregates occluding at least one hole (n = 211) however the vast majority of the holes (70%) showed no tissue aggregates. Mean age at which patients with occluded VCs had their first surgeries (3.25 yrs) was lower than in patients with non-occluded VCs (5.29 yrs, p < 0.02). Mean length of time of implantation of occluded VCs, 33.22 months was greater than for non-occluded VCs, 23.8 months (p = 0.02). Patients with myelomeningocele had a greater probability of having an occluded VC (p = 0.0426). VCs with occlusions had greater numbers of macrophages and astrocytes in comparison to non-occluded VCs (p < 0.01). Microglia comprised only 2-6% of the VC-obstructing tissue aggregates. Histologic analysis showed choroid plexus occlusion in 24%, vascularized glial tissue occlusion in 24%, prevalent lymphocytic inflammation in 29%, and foreign body giant cell reactions in 5% and no ependyma. CONCLUSION: Our data show that age of the first surgery and length of time a VC is implanted are factors that influence the degree of VC obstruction. The tissue aggregates obstructing VCs are composed predominantly of astrocytes and macrophages; microglia have a relatively small presence.


Asunto(s)
Obstrucción del Catéter/efectos adversos , Catéteres de Permanencia/efectos adversos , Plexo Coroideo/patología , Hidrocefalia/cirugía , Derivación Ventriculoperitoneal/efectos adversos , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , Plexo Coroideo/citología , Femenino , Humanos , Hidrocefalia/diagnóstico , Imagenología Tridimensional/métodos , Lactante , Masculino , Estudios Retrospectivos , Factores de Tiempo , Derivación Ventriculoperitoneal/tendencias , Adulto Joven
19.
Noncoding RNA ; 7(3)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34287356

RESUMEN

Exosomes are a class of small, secreted extracellular vesicles (EV) that have recently gained considerable attention for their role in normal cellular function, disease processes and potential as biomarkers. Exosomes serve as intercellular messengers and carry molecular cargo that can alter gene expression and the phenotype of recipient cells. Here, we investigated alterations of microRNA cargo in exosomes secreted by epileptogenic tissue in tuberous sclerosis complex (TSC), a multi-system genetic disorder that includes brain lesions known as tubers. Approximately 90% of TSC patients suffer from seizures that originate from tubers, and ~60% are resistant to antiseizure drugs. It is unknown why some tubers cause seizures while others do not, and the molecular basis of drug-resistant epilepsy is not well understood. It is believed that neuroinflammation is involved, and characterization of this mechanism may be key to disrupting the "vicious cycle" between seizures, neuroinflammation, and increased seizure susceptibility. We isolated exosomes from epileptogenic and non-epileptogenic TSC tubers, and we identified differences in their microRNA cargo using small RNA-seq. We identified 12 microRNAs (including miR-142-3p, miR-223-3p and miR-21-5p) that are significantly increased in epileptogenic tubers and contain nucleic acid motifs that activate toll-like receptors (TLR7/8), initiating a neuroinflammatory cascade. Exosomes from epileptogenic tissue caused induction of key pathways in cultured cells, including innate immune signaling (TLR), inflammatory response and key signaling nodes SQSTM1 (p62) and CDKN1A (p21). Genes induced in vitro were also significantly upregulated in epileptogenic tissue. These results provide new evidence on the role of exosomes and non-coding RNA cargo in the neuroinflammatory cascade of epilepsy and may help advance the development of novel biomarkers and therapeutic approaches for the treatment of drug-resistant epilepsy.

20.
Epilepsia ; 62(10): 2372-2384, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34324194

RESUMEN

OBJECTIVE: This study was undertaken to build and validate a novel dynamic tractography-based model for localizing interictal spike sources and visualizing monosynaptic spike propagations through the white matter. METHODS: This cross-sectional study investigated 1900 spike events recorded in 19 patients with drug-resistant temporal lobe epilepsy (TLE) who underwent extraoperative intracranial electroencephalography (iEEG) and resective surgery. Twelve patients had mesial TLE (mTLE) without a magnetic resonance imaging-visible mass lesion. The remaining seven had a mass lesion in the temporal lobe neocortex. We identified the leading and lagging sites, defined as those initially and subsequently (but within ≤50 ms) showing spike-related augmentation of broadband iEEG activity. In each patient, we estimated the sources of 100 spike discharges using the latencies at given electrode sites and diffusion-weighted imaging-based streamline length measures. We determined whether the spatial relationship between the estimated spike sources and resection was associated with postoperative seizure outcomes. We generated videos presenting the spatiotemporal change of spike-related fiber activation sites by estimating the propagation velocity using the streamline length and spike latency measures. RESULTS: The spike propagation velocity from the source was 1.03 mm/ms on average (95% confidence interval = .91-1.15) across 133 tracts noted in the 19 patients. The estimated spike sources in mTLE patients with International League Against Epilepsy Class 1 outcome were more likely to be in the resected area (83.9% vs. 72.3%, φ = .137, p < .001) and in the medial temporal lobe region (80.5% vs. 72.5%, φ = .090, p = .002) than those associated with the Class ≥2 outcomes. The resulting video successfully animated spike propagations, which were confined within the temporal lobe in mTLE but involved extratemporal lobe areas in lesional TLE. SIGNIFICANCE: We have, for the first time, provided dynamic tractography visualizing the spatiotemporal profiles of rapid propagations of interictal spikes through the white matter. Dynamic tractography has the potential to serve as a unique epilepsy biomarker.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Epilepsia , Estudios Transversales , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...