RESUMEN
Vulvovaginal candidiasis (VVC) is the most common cause of vaginal discharge among women. The present study aimed to investigate the synergistic anticandidal effect of lactobacillus cultures supplemented with plant extracts. Among 600 isolates of lactic acid bacteria, 41 isolates exhibited inhibitory activity against Candida albicans ATCC10231. Six out of 41 cell-free supernatants demonstrated the most potent antibacterial and anticandidal activities. They also inhibited the clinical isolates of C. albicans, causing VVC and non-C. albicans. The synergistic effect between Lactobacillus crispatus 84/7 and Limosilactobacillus reuteri 89/4 was demonstrated by the lowest fractional inhibitory concentration index (FICI = 0.5). The synbiotic culture of bacterial combination, cultured with Jerusalem artichoke (H. tuberosus) extract, also exhibited the strongest inhibition against the tested C. albicans. Biofilm formation decreased after 12 h of incubation in the selected cell-free supernatants of this synbiotic culture. The anticandidal activity of crude extracts was lost after treatment with proteinase K and trypsin but not with heating conditions, suggesting that it may be a heat-stable substance. In conclusion, the combination of L. crispatus 84/7 and L. reuteri 89/4 with H. tuberosus may be a promising candidate for inhibiting Candida infection and biofilm formation, with the potential use as ingredients in vaginal biotherapeutic products.
Asunto(s)
Candida albicans , Candidiasis Vulvovaginal , Extractos Vegetales , Simbióticos , Candida albicans/efectos de los fármacos , Extractos Vegetales/farmacología , Femenino , Humanos , Candidiasis Vulvovaginal/microbiología , Candidiasis Vulvovaginal/tratamiento farmacológico , Excreción Vaginal/microbiología , Biopelículas/efectos de los fármacos , Lactobacillus/efectos de los fármacos , Limosilactobacillus reuteri , Lactobacillus crispatus , Antifúngicos/farmacologíaRESUMEN
The present study aimed to investigate the antibacterial activity of ethanolic Kaempferia parviflora extracts and the combined effects of the plant's specific compounds with gentamicin against clinical strains of carbapenem-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. The minimal inhibitory concentrations (MIC) of gentamicin and Kaempferia parviflora extracts against the tested bacterial strains were determined by using broth microdilution. The combined effects of Kaempferia parviflora extract and gentamicin were investigated by using a checkerboard assay and expressed as a fractional inhibitory concentration index (FICI). Crude ethanolic extract of Kaempferia parviflora showed the lowest median values of MIC towards the tested isolates (n = 10) of these tested bacteria at doses of 64 µg/mL, compared to those of other Kaempferia extracts. Among the isolated compounds, only three compounds, namely 3,5,7-trimethoxyflavone, 3,5,7,3'4'-pentamethoxyflavone, and 5,7,4'-trimethoxyflavone, were identified by NMR structural analysis. According to their FICIs, the synergistic effects of gentamicin combined with 3,5,7,3'4'-pentamethoxyflavone were approximately 90%, 90%, and 80% of tested carbapenem-resistant Klebsiella pneumoniae (CRKP), Pseudomonas aeruginosa (CRPA), and Acinetobacter baumannii (CRAB), respectively. The present study concluded that 3,5,7,3'4'-pentamethoxyflavone extracted from Kaempferia parviflora potentiated the antibacterial action of gentamicin to combat bacterial resistance against the tested bacteria.
RESUMEN
Kaempferia parviflora (KP) has been used as folk medicine for curing various conditions, including anti-inflammatory diseases. However, anti-psoriatic effects in an aspect of suppression of NF-κB activation have not been explored. Therefore, our current study aimed to elucidate the anti-inflammation of KP in lipopolysaccharide (LPS)-induced RAW264.7 cells and anti-psoriatic effects of KP in cytokine-induced human keratinocytes, HaCaT cells. We discovered that KP extract significantly suppressed LPS-induced inflammation at both gene expression and protein production. Specifically, dramatic reduction of nitric oxide (NO) was explored by using Griess method. Consistently, data from RT-qPCR, ELISA, and western blot analysis confirmed that crucial inflammatory and psoriatic markers including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-17, IL-22, and IL-23 were significantly decreased by the action of KP. These events were associated with the results from immunofluorescence study and western blot analysis where the activation of NF-κB upon LPS stimulation was clearly inhibited by KP through its ability to suppress IκB-α degradation resulting in inhibition of NF-κB nuclear translocation. Furthermore, KP extract significantly inhibited LPS-stimulated phosphorylation of ERK1/2, JNK, and p38 in a dose-dependent manner, along with inhibition of ERK1/2 activation in both TNF-α- and EGF-induced HaCaT cells. Interestingly, HaCaT cells exposed to 15 µg/mL of KP also exhibited significant decrease of cell migration and proliferation. Our results revealed that KP extract has a potential to be developed as a promising agent for treating inflammation and psoriasis, in part through targeting the proliferation and the NF-κB pathways.
Asunto(s)
Antiinflamatorios/farmacología , Fármacos Dermatológicos/farmacología , Inflamación/tratamiento farmacológico , Queratinocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Extractos Vegetales/farmacología , Psoriasis/tratamiento farmacológico , Zingiberaceae , Animales , Antiinflamatorios/aislamiento & purificación , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Fármacos Dermatológicos/aislamiento & purificación , Células HaCaT , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Queratinocitos/inmunología , Queratinocitos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosforilación , Extractos Vegetales/aislamiento & purificación , Psoriasis/inmunología , Psoriasis/metabolismo , Células RAW 264.7 , Transducción de Señal , Zingiberaceae/químicaRESUMEN
Ovarian clear cell carcinoma (OCCC) is an uncommon subtype of epithelial cell ovarian cancers (EOCs) that has poor response to conventional platinum-based therapy. Therefore, finding new potential therapeutic agents is required. Since inflammatory cytokine, tumor necrosis factor alpha (TNF-α), is strongly expressed in EOCs and associated with the level of tumor grade, disruption of this inflammation pathway may provide another potential target for OCCC treatment. We previously reported that Kaempferia parviflora (KP) extract decreased cell proliferation and induced apoptosis. However, the effects of KP on OCCC, especially the aspects related to inflammatory cytokines, have not been elucidated. Our current study demonstrated the effects of KP extract on cytokine production in TNF-α-induced OCCC TOV-21G cell line. This study showed that KP extract inhibited interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) production at both transcription and translation levels via the suppression of nuclear factor-kappa B (NF-κB) signal transduction. In contrast, KP extract increased the expression of inhibitor kappa B (IκB) protein which may delay NF-κB translocation into the nucleus upon TNF-α activation. Moreover, the suppression of cytokines released from KP treated-TOV-21G reduced the migration of monocyte cell (THP-1). KP extract also exhibited the inhibition of IL-6 and MCP-1 production from THP-1 activated by lipopolysaccharides (LPS). Cells treated with KP extract exhibited a decrease in extracellular signal-regulated kinases (ERK1/2) and protein kinase B (AKT) phosphorylation and induced myeloid leukemia cell differentiation protein Mcl-1 (MCL-1) expression. Suppression of inflammatory cytokine and chemokine production and inhibition of tumor-associated macrophage (TAM) migration support the possibility of using KP for OCCC treatment.
Asunto(s)
Quimiocina CCL2/metabolismo , FN-kappa B/metabolismo , Neoplasias Ováricas/metabolismo , Extractos Vegetales/farmacología , Factor de Necrosis Tumoral alfa/toxicidad , Zingiberaceae , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , FN-kappa B/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Factor de Necrosis Tumoral alfa/antagonistas & inhibidoresRESUMEN
Kaempferia parviflora (KP) has been reported to have anti-cancer activities. We previously reported its effects against cervical cancer cells and continued to elucidate the effects of KP on inhibiting the production and secretion of interleukin (IL)-6, as well as its relevant signaling pathways involved in cervical tumorigenesis. We discovered that KP suppressed epidermal growth factor (EGF)-induced IL-6 secretion in HeLa cells, and it was associated with a reduced level of Glycoprotein 130 (GP130), phosphorylated signal transducers and activators of transcription 3 (STAT3), and Mcl-1. Our data clearly showed that KP has no effect on nuclear factor kappa B (NF-κB) localization status. However, we found that KP inhibited EGF-stimulated phosphorylation of tyrosine 1045 and tyrosine 1068 of EGF receptor (EGFR) without affecting its expression level. The inhibition of EGFR activation was verified by the observation that KP significantly suppressed a major downstream MAP kinase, ERK1/2. Consistently, KP reduced the expression of Ki-67 protein, which is a cellular marker for proliferation. Moreover, KP potently inhibited phosphorylation of STAT3, Akt, and the expression of Mcl-1 in response to exogenous IL-6 stimulation. These data suggest that KP suppresses EGF-induced production of IL-6 and inhibits its autocrine IL-6/STAT3 signaling critical for maintaining cancer cell progression. We believe that KP may be a potential alternative anti-cancer agent for suppressing cervical tumorigenesis.
Asunto(s)
Interleucina-6/metabolismo , Extractos Vegetales/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias del Cuello Uterino/metabolismo , Zingiberaceae/química , Carcinogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/metabolismo , Femenino , Células HeLa , Humanos , Fosforilación/efectos de los fármacos , Fitoterapia/métodos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/prevención & controlRESUMEN
BACKGROUND: Kaempferia parviflora (KP) is an herb found in the north of Thailand and used as a folk medicine for improving vitality. Current reports have shown the anti-cancer activities of KP. However, the anti-cancer effects of KP on highly aggressive ovarian cancer have not been investigated. Therefore, we determined the effects of KP on cell proliferation, migration, and cell death in SKOV3 cells. METHODS: Ovarian cancer cell line, SKOV3 was used to investigate the anti-cancer effect of KP extract. Cell viability, cell proliferation, MMP activity, cell migration, and invasion were measured by MTT assay, cell counting, gelatin zymography, wound healing assay, and Transwell migration and invasion assays, respectively. Cell death was determined by trypan blue exclusion test, AnnexinV/PI with flow cytometry, and nuclear staining. The level of ERK and AKT phosphorylation, and caspase-3, caspase-7, caspase-9 was investigated by western blot analysis. RESULTS: KP extract was cytotoxic to SKOV3 cells when the concentration was increased, and this effect could still be observed even though EGF was present. Besides, the cell doubling time was significantly prolonged in the cells treated with KP. Moreover, KP strongly suppressed cell proliferation, cell migration and invasion. These consequences may be associated with the ability of KP in inhibiting the activity of MMP-2 and MMP-9 assayed by gelatin zymography. Moreover, KP at high concentrations could induce SKOV3 cell apoptosis demonstrated by AnnexinV/PI staining and flow cytometry. Consistently, nuclear labelling of cells treated with KP extract showed DNA fragmentation and deformity. The induction of caspase-3, caspase-7, and caspase-9 indicates that KP induces cell death through the intrinsic apoptotic pathway. The antitumor activities of KP might be regulated through PI3K/AKT and MAPK pathways since the phosphorylation of AKT and ERK1/2 was reduced. CONCLUSIONS: The inhibitory effects of KP in cell proliferation, cell migration and invasion together with apoptotic cell death induction in SKOV3 cells suggest that KP has a potential to be a new candidate for ovarian cancer chemotherapeutic agent.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Ováricas/metabolismo , Extractos Vegetales/farmacología , Zingiberaceae/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismoRESUMEN
DNA barcoding coupled high resolution melting (Bar-HRM) is an emerging method for species discrimination based on DNA dissociation kinetics. The aim of this work was to evaluate the suitability of different primer sets, derived from selected DNA regions, for Bar-HRM analysis of species in Kaempferia (Zingiberaceae). Four primer pairs were evaluated (rbcL, rpoC, trnL and ITS1). It was observed that the ITS1 barcode was the most useful DNA barcoding region overall for species discrimination out of all of the regions and primers assessed. Thus, the primer pair derived from the ITS1 region was the single most effective region for the identification of the tested species, whereas the rbcL primer pair gave the lowest resolution. Our Bar-HRM developed here would not only be useful for identification of Kaempferia plant specimens lacking essential parts for morphological identification but will be useful for authenticating products in powdered form of a high value medicinal species Kaempferia parviflora, in particular.
Asunto(s)
Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/química , ADN de Plantas/genética , Zingiberaceae/clasificación , Zingiberaceae/genética , Cartilla de ADN/genética , Minería de Datos , Desnaturalización de Ácido Nucleico , Plantas Medicinales/clasificación , Plantas Medicinales/genéticaRESUMEN
Kaempferia parviflora (KP) has been traditionally used as a folk remedy to treat several diseases including cancer, and several studies have reported cytotoxic activities of extracts of KP against a number of different cancer cell lines. However, many aspects of the molecular mechanism of action of KP remain unclear. In particular, the ability of KP to regulate cancer cell growth and survival signaling is still largely unexplored. The current study aimed to investigate the effects of KP on cell viability, cell migration, cell invasion, cell apoptosis, and on signaling pathways related to growth and survival of cervical cancer cells, HeLa. We discovered that KP reduced HeLa cell viability in a concentration-dependent manner. The potent cytotoxicity of KP against HeLa cells was associated with a dose-dependent induction of apoptotic cell death as determined by flow cytometry and observation of nuclear fragmentation. Moreover, KP-induced cell apoptosis was likely to be mediated through the intrinsic apoptosis pathway since caspase 9 and caspase 7, but not BID, were shown to be activated after KP exposure. Based on the observation that KP induced apoptosis in HeLa cell, we further investigated the effects of KP at non-cytotoxic concentrations on suppressing signal transduction pathways relevant to cell growth and survival. We found that KP suppressed the MAPK and PI3K/AKT signaling pathways in cells activated with EGF, as observed by a significant decrease in phosphorylation of ERK1/2, Elk1, PI3K, and AKT. The data suggest that KP interferes with the growth and survival of HeLa cells. Consistent with the inhibitory effect on EGF-stimulated signaling, KP potently suppressed the migration of HeLa cells. Concomitantly, KP was demonstrated to markedly inhibit HeLa cell invasion. The ability of KP in suppressing the migration and invasion of HeLa cells was associated with the suppression of matrix metalloproteinase-2 production. These data strongly suggest that KP may slow tumor progression and metastasis in patients with cervical cancer. Taken together, the present report provides accumulated evidence revealing the potent anti-cancer activities of Kaempferia parviflora against cervical cancer HeLa cells, and suggests its potential use as an alternative way for cervical cancer prevention and therapy.
RESUMEN
AIM: The aim of the study is to investigate the antibacterial activity of 10 volatile oils extracted from medicinal plants, including galangal (Alpinia galanga Linn.), ginger (Zingiber officinale), plai (Zingiber cassumunar Roxb.), lime (Citrus aurantifolia), kaffir lime (Citrus hystrix DC.), sweet basil (Ocimum basilicum Linn.), tree basil (Ocimum gratissimum), lemongrass (Cymbopogon citratus DC.), clove (Syzygium aromaticum), and cinnamon (Cinnamomum verum) against four standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and 30 clinical isolates of multidrug-resistant A. baumannii (MDR-A. baumannii). MATERIALS AND METHODS: Agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration (MBC) were employed for the determination of bactericidal activity of water distilled medicinal plants. Tea tree oil (Melaleuca alternifolia) was used as positive control in this study. RESULTS: The results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus, E. coli, P. aeruginosa, and A. baumannii. Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa. In addition, volatile oil extracted from cinnamon, clove, and tree basil possessed potent bactericidal activity against MDR-A. baumannii with MBC90 of 0.5, 1, and 2 mg/mL, respectively. CONCLUSIONS: The volatile oil extracts would be useful as alternative natural product for the treatment of the most common human pathogens and MDR-A. baumannii infections.
RESUMEN
The essential oils from rhizomes of five Hedychium species, H. coronarium, H. neocarneum, H. flavescens, H. speciosum and H. stenopetalum (Zingiberaceae), were obtained by hydrodistillation and analyzed by capillary GC and GC/MS. Sixty components were identified and percentage oil yields from the fresh plants ranged from 0.06-0.17 % (v/w). All rhizome oils were rich in terpenes, especially monoterpenes (75.0-95.9 %). The most common compounds in the rhizome oils of Hedychium were beta-pinene, linalool and 1,8-cineole. The essential oils were tested against four bacterial strains. They showed moderate to weak activity against Gram-positive bacteria (inhibition zone 25-13 mm, MIC 0.3-8.3 mg/mL, MBC 0.6-8.3 mg/mL).