Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041910

RESUMEN

Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) generates genome-wide chromatin accessibility profiles, providing valuable insights into epigenetic gene regulation at both pooled-cell and single-cell population levels. Comprehensive analysis of ATAC-seq data involves the use of various interdependent programs. Learning the correct sequence of steps needed to process the data can represent a major hurdle. Selecting appropriate parameters at each stage, including pre-analysis, core analysis, and advanced downstream analysis, is important to ensure accurate analysis and interpretation of ATAC-seq data. Additionally, obtaining and working within a limited computational environment presents a significant challenge to non-bioinformatic researchers. Therefore, we present Cloud ATAC, an open-source, cloud-based interactive framework with a scalable, flexible, and streamlined analysis framework based on the best practices approach for pooled-cell and single-cell ATAC-seq data. These frameworks use on-demand computational power and memory, scalability, and a secure and compliant environment provided by the Google Cloud. Additionally, we leverage Jupyter Notebook's interactive computing platform that combines live code, tutorials, narrative text, flashcards, quizzes, and custom visualizations to enhance learning and analysis. Further, leveraging GPU instances has significantly improved the run-time of the single-cell framework. The source codes and data are publicly available through NIH Cloud lab https://github.com/NIGMS/ATAC-Seq-and-Single-Cell-ATAC-Seq-Analysis. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Asunto(s)
Nube Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biología Computacional/métodos , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Análisis de la Célula Individual/métodos , Cromatina/genética , Cromatina/metabolismo
3.
ACS Appl Mater Interfaces ; 16(2): 1985-1998, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38175743

RESUMEN

Myocardial infarction (MI) is one of the leading causes of death in the developed world, and the loss of cardiomyocytes plays a critical role in the pathogenesis of heart failure. Implicated in this process is a decrease in gap junction intercellular communication due to remodeling of Connexin43 (Cx43). We previously identified that intraperitoneal injection of the Pyk2 inhibitor PF4618433 reduced infarct size, maintained Cx43 at the intercalated disc in left ventricle hypertrophic myocytes, and improved cardiac function in an MI animal model of heart failure. With the emergence of injectable hydrogels as a therapeutic toward the regeneration of cardiac tissue after MI, here, we provide proof of concept that the release of tyrosine kinase inhibitors from hydrogels could have beneficial effects on cardiomyocytes. We developed an injectable hydrogel consisting of thiolated hyaluronic acid and P123-maleimide micelles that can incorporate PF4618433 as well as the Src inhibitor Saracatinib and achieved sustained release (of note, Src activates Pyk2). Using neonatal rat ventricular myocytes in the presence of a phorbol ester, endothelin-1, or phenylephrine to stimulate cardiac hypertrophy, the release of PF4618433 from the hydrogel had the same ability to decrease Cx43 tyrosine phosphorylation and maintain Cx43 localization at the plasma membrane as when directly added to the growth media. Additional beneficial effects included decreases in apoptosis, the hypertrophic marker atrial natriuretic peptide (ANP), and serine kinases upregulated in hypertrophy. Finally, the presence of both PF4618433 and Saracatinib further decreased the level of ANP and apoptosis than each inhibitor alone, suggesting that a combinatorial approach may be most beneficial. These findings provide the groundwork to test if tyrosine kinase inhibitor release from hydrogels will have a beneficial effect in an animal model of MI-induced heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratas , Animales , Conexina 43/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/patología , Fosforilación , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Comunicación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...