Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 46(2): 428-431, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33449051

RESUMEN

Transparent conductive oxides such as indium tin oxide (ITO) bear the potential to deliver efficient all-optical functionality due to their record-breaking optical nonlinearity at epsilon near zero (ENZ) wavelengths. All-optical applications generally involve more than one beam, but, to our knowledge, the coherent interaction between beams has not previously been discussed in these materials, which have a hot electron nonlinearity. Here we study the optical nonlinearity at ENZ in ITO and show that spatial and temporal interference has important consequences in a two-beam geometry. Our pump-probe results reveal a polarization-dependent transient that is explained by diffraction of pump light into the probe direction by a temperature grating produced by pump-probe interference. We further show that this effect allows tailoring the nonlinearity by tuning the frequency or chirp. Having fine control over the strong and ultrafast ENZ nonlinearity may enable applications in all-optical neural networks, nanophotonics, and spectroscopy.

2.
Nanotechnology ; 21(14): 145307, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20234079

RESUMEN

The capability to position individual emitters, such as quantum dots, near metallic nanostructures is highly desirable for constructing active optical devices that can manipulate light at the single photon level. The emergence of the field of plasmonics as a means to confine light now introduces a need for high precision and reliability in positioning any source of emission, which has thus far been elusive. Placing an emission source within the influence of plasmonic structures now requires accuracy approaching molecular length scales. In this paper we report the ability to reliably position nanoscale functional objects, specifically quantum dots, with sub-100-nm accuracy, which is several times smaller than the diffraction limit of a quantum dot's emission light. Electron beam lithography-defined masks on metallic surfaces and a series of surface chemical functionalization processes allow the programmed assembly of DNA-linked colloidal quantum dots. The quantum dots are successfully functionalized to areas as small as (100 nm)(2) using the specific binding of thiolated DNA to Au/Ag, and exploiting the streptavidin-biotin interaction. An analysis of the reproducibility of the process for various pattern sizes shows that this technique is potentially scalable to the single quantum dot level with 50 nm accuracy accompanied by a moderate reduction in yield.


Asunto(s)
Metales/química , Nanoestructuras/química , Puntos Cuánticos , Algoritmos , ADN , Nanoestructuras/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...