Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cancer Immunol Immunother ; 73(6): 113, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693312

RESUMEN

Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.


Asunto(s)
Neoplasias de la Mama , Senescencia Celular , Neutrófilos , Piperazinas , Piridinas , Humanos , Piperazinas/farmacología , Piridinas/farmacología , Senescencia Celular/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Neutrófilos/metabolismo , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Línea Celular Tumoral , Activación Neutrófila/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
2.
iScience ; 27(5): 109814, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38746669

RESUMEN

2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) is the endogenous agonist of STING; as such, cGAMP has powerful immunostimulatory activity, due to its capacity to stimulate type I interferon-mediated immunity. Recent evidence indicates that cancer cells, under certain conditions, can release cGAMP extracellularly, a phenomenon currently considered important for therapeutic responses and tumor rejection. Nonetheless, the mechanisms that regulate cGAMP activity in the extracellular environment are still largely unexplored. In this work, we collected evidence demonstrating that CD38 glycohydrolase can inhibit extracellular cGAMP activity through its direct binding. We firstly used different cell lines and clinical samples to demonstrate a link between CD38 and extracellular cGAMP activity; we then performed extensive in silico molecular modeling and cell-free biochemical assays to show a direct interaction between the catalytic pocket of CD38 and cGAMP. Altogether, our findings expand the current knowledge about the regulation of cGAMP activity.

3.
Mol Cancer ; 23(1): 68, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561826

RESUMEN

Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.e. "elimination", "equilibrium" and "escape", is influenced by several cancer- and microenvironment-dependent factors. Senescence is a cellular program primed by cells in response to different pathophysiological stimuli, which is based on long-lasting cell cycle arrest and the secretion of numerous bioactive and inflammatory molecules. Because of this, cellular senescence is a potent immunomodulatory factor promptly recruiting immune cells and actively promoting tissue remodeling. In the context of cancer, these functions can lead to both cancer immunosurveillance and immunosuppression. In this review, the authors will discuss the role of senescence in cancer immunoediting, highlighting its context- and timing-dependent effects on the different three phases, describing how senescent cells promote immune cell recruitment for cancer cell elimination or sustain tumor microenvironment inflammation for immune escape. A potential contribution of senescent cells in cancer dormancy, as a mechanism of therapy resistance and cancer relapse, will be discussed with the final objective to unravel the immunotherapeutic implications of senescence modulation in cancer.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Senescencia Celular , Sistema Inmunológico , Terapia de Inmunosupresión , Microambiente Tumoral
4.
Cell Death Dis ; 14(7): 438, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460534

RESUMEN

Natural Killer (NK) cells act as important regulators in the development and progression of hematological malignancies and their suppressor activity against Multiple Myeloma (MM) cells has been confirmed in many studies. Significant changes in the distribution of NK cell subsets and dysfunctions of NK cell effector activities were described in MM patients and correlated with disease staging. Thus, restoring or enhancing the functionality of these effectors for the treatment of MM represents a critical need. Neddylation is a post-translational modification that adds a ubiquitin-like molecule, NEDD8, to the substrate protein. One of the outcomes is the activation of the Cullin Ring Ligases (CRLs), a class of ubiquitin-ligases that controls the degradation of about 20% of proteasome-regulated proteins. Overactivation of CRLs has been described in cancer and can lead to tumor growth and progression. Thus, targeting neddylation represents an attractive approach for cancer treatment. Our group has recently described how pharmacologic inhibition of neddylation increases the expression of the NKG2D activating receptor ligands, MICA and MICB, in MM cells, making these cells more susceptible to NK cell degranulation and killing. Here, we extended our investigation to the direct role of neddylation on NK cell effector functions exerted against MM. We observed that inhibition of neddylation enhanced NK cell-mediated degranulation and killing against MM cells and improved Daratumumab/Elotuzumab-mediated response. Mechanistically, inhibition of neddylation increased the expression of Rac1 and RhoA GTPases in NK cells, critical mediators for an efficient degranulation at the immunological synapse of cytotoxic lymphocytes, and augmented the levels of F-actin and perforin polarization in NK cells contacting target cells. Moreover, inhibition of neddylation partially abrogated TGFß-mediated repression of NK cell effector activity. This study describes the role of neddylation on NK cell effector functions and highlights the positive immunomodulatory effects achieved by the inhibition of this pathway in MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Proteína NEDD8/metabolismo , Antineoplásicos/farmacología , Proteínas , Células Asesinas Naturales/metabolismo , Ligasas
5.
Cancer Immunol Immunother ; 72(9): 3097-3110, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37356050

RESUMEN

Although the activation of innate immunity to treat a wide variety of cancers is gaining increasing attention, it has been poorly investigated in human papillomavirus (HPV)-associated malignancies. Because these tumors harbor a severely impaired cGAS-STING axis, but they still retain a largely functional RIG-I pathway, another critical mediator of adaptive and innate immune responses, we asked whether RIG-I activation by the 5'ppp-RNA RIG-I agonist M8 would represent a therapeutically viable option to treat HPV+ cancers. Here, we show that M8 transfection of two cervical carcinoma-derived cell lines, CaSki and HeLa, both expressing a functional RIG-I, triggers intrinsic apoptotic cell death, which is significantly reduced in RIG-I KO cells. We also demonstrate that M8 stimulation potentiates cisplatin-mediated cell killing of HPV+ cells in a RIG-I dependent manner. This combination treatment is equally effective in reducing tumor growth in a syngeneic pre-clinical mouse model of HPV16-driven cancer, where enhanced expression of lymphocyte-recruiting chemokines and cytokines correlated with an increased number of activated natural killer (NK) cells in the tumor microenvironment. Consistent with a role of RIG-I signaling in immunogenic cell killing, stimulation of NK cells with conditioned medium from M8-transfected CaSki boosted NK cell proliferation, activation, and migration in a RIG-I-dependent tumor cell-intrinsic manner. Given the highly conserved molecular mechanisms of carcinogenesis and genomic features of HPV-driven cancers and the remarkably improved prognosis for HPV+ oropharyngeal cancer, targeting RIG-I may represent an effective immunotherapeutic strategy in this setting, favoring the development of de-escalating strategies.


Asunto(s)
Neoplasias , Infecciones por Papillomavirus , Femenino , Humanos , Animales , Ratones , Virus del Papiloma Humano , Cisplatino/farmacología , Infecciones por Papillomavirus/complicaciones , Apoptosis , Células Asesinas Naturales
6.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298418

RESUMEN

Natural Killer (NK) cells are innate cytotoxic lymphoid cells that play a crucial role in cancer immunosurveillance. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed, or infected cells. The secretion of NKG2D ligands (NKG2DLs) through protease-mediated cleavage or in an extracellular vesicle (EV) is a mode to control their cell surface expression and a mechanism used by cancer cells to evade NKG2D-mediated immunosurveillance. EVs are emerging as important players in mediating cell-to-cell communication due to their ability to transfer biological material to acceptor cells. Herein, we investigated the spreading of NKG2DLs of both MIC and ULBP molecules through the EV-mediated cross-dressing on multiple myeloma (MM) cells. We focused our attention on two MICA allelic variants, namely MICA*008 and MICA*019, representing the prototype of short and long MICA alleles, respectively, and on ULBP-1, ULBP-2, and ULBP-3. Our findings demonstrate that both ULBP and MICA ligands can be acquired from tumor cells through EVs enhancing NK cell recognition and killing. Moreover, besides MICA, EVs expressing ULBP-1 but not ULBP-2 and 3 were detected in bone marrow aspirates derived from a cohort of MM patients. Our findings shed light on the role of EV-associated MICA allelic variants and ULBP molecules in the modulation of NKG2D-mediated NK cell immunosurveillance in the tumor microenvironment. Moreover, the EV-mediated transfer of NKG2DLs could suggest novel therapeutic approaches based on the usage of engineered nanoparticles aimed at increasing cancer cell immunogenicity.


Asunto(s)
Vesículas Extracelulares , Mieloma Múltiple , Humanos , Mieloma Múltiple/metabolismo , Ligandos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales , Vesículas Extracelulares/metabolismo , Muerte Celular , Vendajes , Microambiente Tumoral
7.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047835

RESUMEN

The success of senescence-based anticancer therapies relies on their anti-proliferative power and on their ability to trigger anti-tumor immune responses. Indeed, genotoxic drug-induced senescence increases the expression of NK cell-activating ligands on multiple myeloma (MM) cells, boosting NK cell recognition and effector functions. Senescent cells undergo morphological change and context-dependent functional diversification, acquiring the ability to secrete a vast pool of molecules termed the senescence-associated secretory phenotype (SASP), which affects neighboring cells. Recently, exosomes have been recognized as SASP factors, contributing to modulating a variety of cell functions. In particular, evidence suggests a key role for exosomal microRNAs in influencing many hallmarks of cancer. Herein, we demonstrate that doxorubicin treatment of MM cells leads to the enrichment of miR-433 into exosomes, which in turn induces bystander senescence. Our analysis reveals that the establishment of the senescent phenotype on neighboring MM cells is p53- and p21-independent and is related to CDK-6 down-regulation. Notably, miR-433-dependent senescence does not induce the up-regulation of activating ligands on MM cells. Altogether, our findings highlight the possibility of miR-433-enriched exosomes to reinforce doxorubicin-mediated cellular senescence.


Asunto(s)
Antibióticos Antineoplásicos , Efecto Espectador , Senescencia Celular , Doxorrubicina , Exosomas , MicroARNs , Mieloma Múltiple , Inhibidores de Topoisomerasa II , Senescencia Celular/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Humanos , Línea Celular Tumoral , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Daño del ADN , MicroARNs/genética , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo
8.
Cell Mol Immunol ; 20(5): 432-447, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36949244

RESUMEN

Dendritic cells (DCs) exhibit a specialized antigen-presenting function and play crucial roles in both innate and adaptive immune responses. Due to their ability to cross-present tumor cell-associated antigens to naïve T cells, DCs are instrumental in the generation of specific T-cell-mediated antitumor effector responses in the control of tumor growth and tumor cell dissemination. Within an immunosuppressive tumor microenvironment, DC antitumor functions can, however, be severely impaired. In this review, we focus on the mechanisms of DC capture and activation by tumor cell antigens and the role of the tumor microenvironment in shaping DC functions, taking advantage of recent studies showing the phenotype acquisition, transcriptional state and functional programs revealed by scRNA-seq analysis. The therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is also discussed.


Asunto(s)
Células Dendríticas , Neoplasias , Humanos , Antígenos de Neoplasias , Linfocitos T , Microambiente Tumoral
9.
Eur J Immunol ; 53(2): e2250198, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36440686

RESUMEN

Natural killer (NK) cell activation is regulated by activating and inhibitory receptors that facilitate diseased cell recognition. Among activating receptors, NKG2D and DNAM-1 play a pivotal role in anticancer immune responses since they bind ligands upregulated on transformed cells. During tumor progression, however, these receptors are frequently downmodulated and rendered functionally inactive. Of note, NKG2D internalization has been associated with the acquisition of a dysfunctional phenotype characterized by the cross-tolerization of unrelated activating receptors. However, our knowledge of the consequences of NKG2D engagement is still incomplete. Here, by cytotoxicity assays combined with confocal microscopy, we demonstrate that NKG2D engagement on human NK cells impairs DNAM-1-mediated killing through two different converging mechanisms: by the upregulation of the checkpoint inhibitory receptor TIGIT, that in turn suppresses DNAM-1-mediated cytotoxic function, and by direct inhibition of DNAM-1-promoted signaling. Our results highlight a novel interplay between NKG2D and DNAM-1/TIGIT receptors that may facilitate neoplastic cell evasion from NK cell-mediated clearance.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Escape del Tumor , Humanos , Células Asesinas Naturales/inmunología , Neoplasias/genética , Neoplasias/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK , Transducción de Señal , Escape del Tumor/genética , Escape del Tumor/inmunología
10.
Front Immunol ; 13: 942640, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967396

RESUMEN

NKG2D ligands play a relevant role in Natural Killer (NK) cell -mediated immune surveillance of multiple myeloma (MM). Different levels of regulation control the expression of these molecules at cell surface. A number of oncogenic proteins and miRNAs act as negative regulators of NKG2D ligand transcription and translation, but the molecular mechanisms sustaining their basal expression in MM cells remain poorly understood. Here, we evaluated the role of the growth arrest specific 6 (GAS6)/TAM signaling pathway in the regulation of NKG2D ligand expression and MM recognition by NK cells. Our data showed that GAS6 as well as MERTK and AXL depletion in MM cells results in MICA downregulation and inhibition of NKG2D-mediated NK cell degranulation. Noteworthy, GAS6 derived from bone marrow stromal cells (BMSCs) also increases MICA expression at both protein and mRNA level in human MM cell lines and in primary malignant plasma cells. NF-kB activation is required for these regulatory mechanisms since deletion of a site responsive for this transcription factor compromises the induction of mica promoter by BMSCs. Accordingly, knockdown of GAS6 reduces the capability of BMSCs to activate NF-kB pathway as well as to enhance MICA expression in MM cells. Taken together, these results shed light on molecular mechanism underlying NKG2D ligand regulation and identify GAS6 protein as a novel autocrine and paracrine regulator of basal expression of MICA in human MM cells.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Péptidos y Proteínas de Señalización Intercelular , Mieloma Múltiple , Subfamilia K de Receptores Similares a Lectina de Células NK , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ligandos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Transducción de Señal
11.
Biology (Basel) ; 11(4)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35453767

RESUMEN

A-to-I editing is a post-transcriptional mechanism affecting coding and non-coding dsRNAs, catalyzed by the adenosine deaminases acting on the RNA (ADAR) family of enzymes. A-to-I modifications of endogenous dsRNA (mainly derived from Alu repetitive elements) prevent their recognition by cellular dsRNA sensors, thus avoiding the induction of antiviral signaling and uncontrolled IFN-I production. This process, mediated by ADAR1 activity, ensures the activation of an innate immune response against foreign (non-self) but not self nucleic acids. As a consequence, ADAR1 mutations or its de-regulated activity promote the development of autoimmune diseases and strongly impact cell growth, also leading to cancer. Moreover, the excessive inflammation promoted by Adar1 ablation also impacts T and B cell maturation, as well as the development of dendritic cell subsets, revealing a new role of ADAR1 in the homeostasis of the immune system.

12.
J Extracell Vesicles ; 11(1): e12176, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34973063

RESUMEN

Natural killer (NK) cells are innate cytotoxic lymphocytes that play a key role in cancer immunosurveillance thanks to their ability to recognize and kill cancer cells. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed or infected cells. The release of NKG2D ligands (NKG2DLs) in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle (EV) secretion allows cancer cells to evade NKG2D-mediated immunosurveillance. In this work, we investigated the immunomodulatory properties of the NKG2D ligand MICA*008 associated to distinct populations of EVs (i.e., small extracellular vesicles [sEVs] and medium size extracellular vesicles [mEVs]). By using as model a human MICA*008-transfected multiple myeloma (MM) cell line, we found that this ligand is present on both vesicle populations. Interestingly, our findings reveal that NKG2D is specifically involved in the uptake of vesicles expressing its cognate ligand. We provide evidence that MICA*008-expressing sEVs and mEVs are able on one hand to activate NK cells but, following prolonged stimulation induce a sustained NKG2D downmodulation leading to impaired NKG2D-mediated functions. Moreover, our findings show that MICA*008 can be transferred by vesicles to NK cells causing fratricide. Focusing on MM as a clinically and biologically relevant model of tumour-NK cell interactions, we found enrichment of EVs expressing MICA in the bone marrow of a cohort of patients. All together our results suggest that the accumulation of NKG2D ligands associated to vesicles in the tumour microenvironment could favour the suppression of NK cell activity either by NKG2D down-modulation or by fratricide of NK cell dressed with EV-derived NKG2D ligands.


Asunto(s)
Vesículas Extracelulares/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Vigilancia Inmunológica , Células Asesinas Naturales/inmunología , Mieloma Múltiple/inmunología , Anciano , Anciano de 80 o más Años , Médula Ósea/inmunología , Muerte Celular/inmunología , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Inmunomodulación , Interferón gamma/metabolismo , Ligandos , Masculino , Persona de Mediana Edad , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Escape del Tumor
13.
Cell Death Dis ; 12(9): 836, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34482362

RESUMEN

Multiple Myeloma (MM) is an incurable hematologic malignancy of terminally differentiated plasma cells (PCs), where immune interactions play a key role in the control of cancer cell growth and survival. In particular, MM is characterized by a highly immunosuppressive bone marrow microenvironment where the anticancer/cytotoxic activity of Natural Killer (NK) cells is impaired. This study is focused on understanding whether modulation of neddylation can regulate NK cell-activating ligands expression and sensitize MM to NK cell killing. Neddylation is a post-translational modification that adds a ubiquitin-like protein, NEDD8, to selected substrate proteins, affecting their stability, conformation, subcellular localization, and function. We found that pharmacologic inhibition of neddylation using a small-molecule inhibitor, MLN4924/Pevonedistat, increases the expression of the NK cell-activating receptor NKG2D ligands MICA and MICB on the plasma membrane of different MM cell lines and patient-derived PCs, leading to enhanced NK cell degranulation. Mechanistically, MICA expression is upregulated at mRNA level, and this is the result of an increased promoter activity after the inhibition of IRF4 and IKZF3, two transcriptional repressors of this gene. Differently, MLN4924/Pevonedistat induced accumulation of MICB on the plasma membrane with no change of its mRNA levels, indicating a post-translational regulatory mechanism. Moreover, inhibition of neddylation can cooperate with immunomodulatory drugs (IMiDs) in upregulating MICA surface levels in MM cells due to increased expression of CRBN, the cellular target of these drugs. In summary, MLN4924/Pevonedistat sensitizes MM to NK cell recognition, adding novel information on the anticancer activity of neddylation inhibition.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunomodulación , Células Asesinas Naturales/inmunología , Mieloma Múltiple/inmunología , Proteína NEDD8/antagonistas & inhibidores , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Regulación hacia Arriba , Anciano , Anciano de 80 o más Años , Degranulación de la Célula/efectos de los fármacos , Línea Celular Tumoral , Ciclopentanos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Factores Inmunológicos/farmacología , Inmunomodulación/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/fisiología , Ligandos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Proteína NEDD8/metabolismo , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/metabolismo , Regiones Promotoras Genéticas/genética , Pirimidinas/farmacología
14.
Eur J Immunol ; 51(11): 2607-2617, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34392531

RESUMEN

Rearrangement of the actin cytoskeleton is critical for cytotoxic and immunoregulatory functions as well as migration of natural killer (NK) cells. However, dynamic reorganization of actin is a complex process, which remains largely unknown. Here, we investigated the role of the protein Cereblon (CRBN), an E3 ubiquitin ligase complex co-receptor and the primary target of the immunomodulatory drugs, in NK cells. We observed that CRBN partially colocalizes with F-actin in chemokine-treated NK cells and is recruited to the immunological synapse, thus suggesting a role for this protein in cytoskeleton reorganization. Accordingly, silencing of CRBN in NK cells results in a reduced cytotoxicity that correlates with a defect in conjugate and lytic synapse formation. Moreover, CRBN depletion significantly impairs the ability of NK cells to migrate and reduces the enhancing effect of lenalidomide on NK cell migration. Finally, we provided evidence that CRBN is required for activation of the small GTPase Rac1, a critical mediator of cytoskeleton dynamics. Indeed, in CRBN-depleted NK cells, chemokine-mediated or target cell-mediated Rac1 activation is significantly reduced. Altogether our data identify a critical role for CRBN in regulating NK cell functions and suggest that this protein may mediate the stimulatory effect of lenalidomide on NK cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Movimiento Celular/inmunología , Citotoxicidad Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Proteína de Unión al GTP rac1/inmunología , Movimiento Celular/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Humanos , Agentes Inmunomoduladores/farmacología , Células Asesinas Naturales/efectos de los fármacos , Lenalidomida/farmacología
15.
Biology (Basel) ; 9(12)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371508

RESUMEN

Cellular senescence represents a robust tumor-protecting mechanism that halts the proliferation of stressed or premalignant cells. However, this state of stable proliferative arrest is accompanied by the Senescence-Associated Secretory Phenotype (SASP), which entails the copious secretion of proinflammatory signals in the tissue microenvironment and contributes to age-related conditions, including, paradoxically, cancer. Novel therapeutic strategies aim at eliminating senescent cells with the use of senolytics or abolishing the SASP without killing the senescent cell with the use of the so-called "senomorphics". In addition, recent works demonstrate the possibility of modifying the composition of the secretome by genetic or pharmacological intervention. The purpose is not to renounce the potent immunostimulatory nature of SASP, but rather learning to modulate it for combating cancer and other age-related diseases. This review describes the main molecular mechanisms regulating the SASP and reports the evidence of the feasibility of abrogating or modulating the SASP, discussing the possible implications of both strategies.

16.
Cancers (Basel) ; 12(2)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069911

RESUMEN

Bone marrow stromal cells (BMSCs) strongly contribute to multiple myeloma (MM) progression, promoting the survival and growth of malignant plasma cells (PCs). However, the possible impact of these cells on the immune-mediated recognition of MM cells remains largely unknown. DNAM-1 activating receptor plays a prominent role in NK cell anti-MM response engaging the ligands poliovirus receptor (PVR) and nectin-2 on malignant PCs. Here, we analysed the role of MM patient-derived BMSCs in the regulation of PVR expression. We found that BMSCs enhance PVR surface expression on MM cells and promote their NK cell-mediated recognition. PVR upregulation occurs at transcriptional level and involves NF-kB transcription factor activation by BMSC-derived soluble factors. Indeed, overexpression of a dominant-negative mutant of IKBα blocked PVR upregulation. IL-8 plays a prominent role in these mechanisms since blockade of CXCR1/2 receptors as well as depletion of the cytokine via RNA interference prevents the enhancement of PVR expression by BMSC-derived conditioned medium. Interestingly, IL-8 is associated with stromal microvesicles which are also required for PVR upregulation via CXCR1/CXCR2 signaling activation. Our findings identify BMSCs as regulators of NK cell anti-MM response and contribute to define novel molecular pathways involved in the regulation of PVR expression in cancer cells.

17.
J Clin Med ; 9(1)2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31948072

RESUMEN

Transforming growth factor (TGF)-ß is a central immunosuppressive cytokine within tumor microenvironment inhibiting the expansion and function of major cellular components of adaptive and innate immune system. Among them, compelling evidence has demonstrated that TGF-ß is a key regulator of natural killer (NK) cells, innate lymphoid cells (ILCs) with a critical role in immunosurveillance against different kinds of cancer cells. A TGF-ß rich tumor microenvironment blocks NK cell activity at multiple levels. This immunosuppressive factor exerts direct regulatory effects on NK cells including inhibition of cytokine production, alteration of activating/inhibitory receptor expression, and promotion of the conversion into non cytotoxic group I ILC (ILC1). Concomitantly, TGF-ß can render tumor cells less susceptible to NK cell-mediated recognition and lysis. Indeed, accumulating evidence suggest that changes in levels of NKG2D ligands, mainly MICA, as well as an increase of immune checkpoint inhibitors (e.g., PD-L1) and other inhibitory ligands on cancer cells significantly contribute to TGF-ß-mediated suppression of NK cell activity. Here, we will take into consideration two major mechanisms underlying the negative regulation of ILC function by TGF-ß in cancer. First, we will address how TGF-ß impacts the balance of signals governing NK cell activity. Second, we will review recent advances on the role of this cytokine in driving ILC plasticity in cancer. Finally, we will discuss how the development of therapeutic approaches blocking TGF-ß may reverse the suppression of host immune surveillance and improve anti-tumor NK cell response in the clinic.

18.
Cytokine Growth Factor Rev ; 51: 19-26, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31837917

RESUMEN

Natural killer (NK) cells are innate lymphoid cells that play a major role in the immune surveillance against tumors and their activity is regulated through signals derived by a number of NK cell inhibitory and activating receptors as well as cytokines and other soluble factors released in the tumor microenvironment. Extracellular vesicles (EVs) are membrane-enclosed particles secreted by all cell types, both in healthy and diseased conditions, and are important mediators of intercellular communication. Depending on the molecular cargo, tumor-derived extracellular vesicles have the capability to either promote or suppress NK cell-mediated functions. Anti-cancer therapies designed to sustain host anti-tumor immune response represent an appealing strategy to control tumor growth avoiding tumor immune escape. The ability of anticancer chemotherapy to enhance the immunogenic potential of malignant cells mainly relies on the establishment of the immunogenic cell death (ICD) and the release of damage-associated molecular patterns (DAMPs). Moreover, the activation of the DNA damage response (DDR) and the induction of senescence represent two crucial modalities aimed at promoting the clearance of drug-treated tumor cells by NK cells. Herein, we will address the main mechanisms used by cancer-derived extracellular vesicles to modulate NK cell activity, and we will discuss how anti-cancer therapies might impact on the secretion and the immunomodulatory function of these vesicles.


Asunto(s)
Vesículas Extracelulares/inmunología , Inmunidad Innata , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Comunicación Celular , Citocinas/inmunología , Humanos , Vigilancia Inmunológica , Fenotipo , Escape del Tumor
19.
Front Immunol ; 10: 1469, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354698

RESUMEN

Long-term sequelae of acute kidney injury (AKI) are associated with incomplete recovery of renal function and the development of chronic kidney disease (CKD), which can be mediated by aberrant innate immune activation, mitochondrial pathology, and accumulation of senescent tubular epithelial cells (TECs). Herein, we show that the innate immune receptor Triggering receptor expressed on myeloid cells-1 (TREM-1) links mitochondrial metabolism to tubular epithelial senescence. TREM-1 is expressed by inflammatory and epithelial cells, both players in renal repair after ischemia/reperfusion (IR)-induced AKI. Hence, we subjected WT and TREM1/3 KO mice to different models of renal IR. TREM1/3 KO mice displayed no major differences during the acute phase of injury, but increased mortality was observed in the recovery phase. This detrimental effect was associated with maladaptive repair, characterized by persistent tubular damage, inflammation, fibrosis, and TEC senescence. In vitro, we observed an altered mitochondrial homeostasis and cellular metabolism in TREM1/3 KO primary TECs. This was associated with G2/M arrest and increased ROS accumulation. Further exposure of cells to ROS-generating triggers drove the cells into a stress-induced senescent state, resulting in decreased wound healing capacity. Treatment with a mitochondria anti-oxidant partly prevented the senescent phenotype, suggesting a role for mitochondria herein. In summary, we have unraveled a novel (metabolic) mechanism by which TREM1/3 deficiency drives senescence in TECs. This involves redox imbalance, mitochondrial dysfunction and a decline in cellular metabolic activities. These finding suggest a novel role for TREM-1 in maintaining tubular homeostasis through regulation of mitochondrial metabolic flexibility.


Asunto(s)
Lesión Renal Aguda/patología , Túbulos Renales/citología , Mitocondrias/metabolismo , Receptor Activador Expresado en Células Mieloides 1/genética , Animales , Apoptosis/inmunología , Hipoxia de la Célula/genética , Células Cultivadas , Senescencia Celular/inmunología , Modelos Animales de Enfermedad , Células Epiteliales/citología , Fibrosis/patología , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Receptor Activador Expresado en Células Mieloides 1/deficiencia
20.
FASEB J ; 33(8): 9489-9504, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31125275

RESUMEN

NK cells have an important role in immunosurveillance of multiple myeloma (MM) progression, and their activity is enhanced by combination therapies able to regulate the expression of specific activating ligands. Liver X receptors (LXRs) are nuclear receptors and important regulators of intracellular cholesterol and lipid homeostasis. Moreover, they have regulatory roles in both cancer and immune response. Indeed, they can regulate inflammation and innate and acquired immunity. Furthermore, LXR activation directly acts in cancer cells (e.g., prostate, breast, melanoma, colon cancer, hepatocarcinoma, glioblastoma, and MM) that show an accumulation of cholesterol and alteration of LXR-mediated metabolic pathways. Here, we investigated the role of LXR and cholesterol on the expression of the NK cell-activating ligands major histocompatibility complex class I chain-related molecule A and B (MICA and MICB) in MM cells. The results shown in this work indicate that MM cells are responsive to LXR activation, which induces changes in the intracellular cholesterol content. These changes correlate with an enhanced expression of MICA and MICB in human MM cell lines and in primary malignant plasma cells, 2 ligands of the NK group 2D receptor (NKG2D)/CD314 activating receptor expressed in cytotoxic lymphocytes, rendering MM cells more sensitive to recognition, degranulation, and killing by NK cells. Mechanistically, we observed that LXR activation regulates MICA and MICB expression at different levels: MICA at the transcriptional level, enhancing mica promoter activity, and MICB by inhibiting its degradation in lysosomes. The present study provides evidence that activation of LXR, by enhancing NKG2D ligand expression, can promote NK cell-mediated cytotoxicity and suggests a novel immune-mediated mechanism involving modulation of intracellular cholesterol levels in cancer cells.-Bilotta, M. T., Abruzzese, M. P., Molfetta, R., Scarno, G., Fionda, C., Zingoni, A., Soriani, A., Garofalo, T., Petrucci, M. T., Ricciardi, M. R., Paolini, R., Santoni, A., Cippitelli, M. Activation of liver X receptor up-regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Receptores X del Hígado/metabolismo , Mieloma Múltiple/metabolismo , Inmunidad Adaptativa/fisiología , Apoptosis/genética , Apoptosis/fisiología , Línea Celular , Células Cultivadas , Cromatografía en Capa Delgada , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunidad Innata/fisiología , Inflamación/metabolismo , Células Asesinas Naturales/metabolismo , Receptores X del Hígado/genética , Microscopía Confocal , Mieloma Múltiple/genética , Regiones Promotoras Genéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...