Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 798, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524852

RESUMEN

cGMP-dependent protein kinase I-α (PKG1α) is a target for pulmonary arterial hypertension due to its role in the regulation of smooth muscle function. While most work has focused on regulation of cGMP turnover, we recently described several small molecule tool compounds which were capable of activating PKG1α via a cGMP independent pathway. Selected molecules were crystallized in the presence of PKG1α and were found to bind to an allosteric site proximal to the low-affinity nucleotide binding domain. These molecules act to displace the switch helix and cause activation of PKG1α representing a new mechanism for the activation and control of this critical therapeutic path. The described structures are vital to understanding the function and control of this key regulatory pathway.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo
2.
J Biol Chem ; 298(9): 102284, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868561

RESUMEN

cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , GMP Cíclico , Piperidinas , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/enzimología , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Humanos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
3.
J Med Chem ; 65(15): 10318-10340, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35878399

RESUMEN

Activation of PKG1α is a compelling strategy for the treatment of cardiovascular diseases. As the main effector of cyclic guanosine monophosphate (cGMP), activation of PKG1α induces smooth muscle relaxation in blood vessels, lowers pulmonary blood pressure, prevents platelet aggregation, and protects against cardiac stress. The development of activators has been mostly limited to cGMP mimetics and synthetic peptides. Described herein is the optimization of a piperidine series of small molecules to yield activators that demonstrate in vitro phosphorylation of vasodilator-stimulated phosphoprotein as well as antiproliferative effects in human pulmonary arterial smooth muscle cells. Hydrogen/deuterium exchange mass spectrometry experiments with the small molecule activators revealed a mechanism of action consistent with cGMP-induced activation, and an X-ray co-crystal structure with a construct encompassing the regulatory domains illustrated a binding mode in an allosteric pocket proximal to the low-affinity cyclic nucleotide-binding domain.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , GMP Cíclico , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Humanos , Miocitos del Músculo Liso , Fosforilación , Procesamiento Proteico-Postraduccional
4.
ACS Med Chem Lett ; 12(8): 1275-1282, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34413956

RESUMEN

PKG1α is a central node in cGMP signaling. Current therapeutics that look to activate this pathway rely on elevation of cGMP levels and subsequent activation of PKG1α. Direct activation of PKG1α could potentially drive additional efficacy without associated side effects of blanket cGMP elevation. We undertook a high-throughput screen to identify novel activators. After triaging through numerous false positive hits, attributed to compound mediated oxidation and activation of PKG1α, a piperidine series of compounds was validated. The hit 1 was a weak activator with EC50 = 47 µM. The activity could be improved to single digit micromolar, as seen in compounds 21 and 25 (7.0 and 3.7 µM, respectively). Several compounds were tested in a pVASP cell-based assay, and for compounds with moderate permeability, good agreement was observed between the biochemical and functional assays. These compounds will function as efficient tools to further interrogate PKG1α biology.

5.
ACS Chem Biol ; 12(5): 1346-1352, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28323406

RESUMEN

The growing prevalence of drug resistant bacteria is a significant global threat to human health. The antibacterial drug rifampin, which functions by inhibiting bacterial RNA polymerase (RNAP), is an important part of the antibacterial armamentarium. Here, in order to identify novel inhibitors of bacterial RNAP, we used affinity-selection mass spectrometry to screen a chemical library for compounds that bind to Escherichia coli RNAP. We identified a novel small molecule, MRL-436, that binds to RNAP, inhibits RNAP, and exhibits antibacterial activity. MRL-436 binds to RNAP through a binding site that differs from the rifampin binding site, inhibits rifampin-resistant RNAP derivatives, and exhibits antibacterial activity against rifampin-resistant strains. Isolation of mutants resistant to the antibacterial activity of MRL-436 yields a missense mutation in codon 622 of the rpoC gene encoding the RNAP ß' subunit or a null mutation in the rpoZ gene encoding the RNAP ω subunit, confirming that RNAP is the functional cellular target for the antibacterial activity of MRL-436, and indicating that RNAP ß' subunit residue 622 and the RNAP ω subunit are required for the antibacterial activity of MRL-436. Similarity between the resistance determinant for MRL-436 and the resistance determinant for the cellular alarmone ppGpp suggests a possible similarity in binding site and/or induced conformational state for MRL-436 and ppGpp.


Asunto(s)
Antibacterianos/farmacología , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Farmacorresistencia Bacteriana/efectos de los fármacos , Sitios de Unión , Farmacorresistencia Bacteriana/genética , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Espectrometría de Masas , Unión Proteica , Rifampin/farmacología , Bibliotecas de Moléculas Pequeñas
6.
ACS Med Chem Lett ; 7(12): 1173-1178, 2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27994759

RESUMEN

A new class of hepatitis C NS3/4A inhibitors was identified by introducing a novel spirocyclic proline-P2 surrogate onto the P2-P4 macrocyclic core of MK-5172 (grazoprevir). The potency profile of new analogues showed excellent pan-genotypic activity for most compounds. The potency evaluation included the most difficult genotype 3a (EC50 values ≤10 nM) and other key genotype 1b mutants. Molecular modeling was used to design new target compounds and rationalize our results. A synthetic approach based on the Julia-Kocienski olefination and macrolactamization to assemble the P2-P4 macrocyclic core containing the novel spirocyclic proline-P2 moiety is presented as well.

7.
Bioorg Med Chem ; 24(21): 5534-5545, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27670099

RESUMEN

Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Guanina/farmacología , Xantinas/farmacología , Animales , Glucemia/efectos de los fármacos , Cristalografía por Rayos X , Inhibidores de la Dipeptidil-Peptidasa IV/administración & dosificación , Inhibidores de la Dipeptidil-Peptidasa IV/química , Relación Dosis-Respuesta a Droga , Prueba de Tolerancia a la Glucosa , Guanina/análogos & derivados , Guanina/química , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Xantinas/administración & dosificación , Xantinas/química
8.
J Nucl Med ; 57(10): 1599-1606, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27230925

RESUMEN

A PET tracer is desired to help guide the discovery and development of disease-modifying therapeutics for neurodegenerative diseases characterized by neurofibrillary tangles (NFTs), the predominant tau pathology in Alzheimer disease (AD). We describe the preclinical characterization of the NFT PET tracer 18F-MK-6240. METHODS: In vitro binding studies were conducted with 3H-MK-6240 in tissue slices and homogenates from cognitively normal and AD human brain donors to evaluate tracer affinity and selectivity for NFTs. Immunohistochemistry for phosphorylated tau was performed on human brain slices for comparison with 3H-MK-6240 binding patterns on adjacent brain slices. PET studies were performed with 18F-MK-6240 in monkeys to evaluate tracer kinetics and distribution in the brain. 18F-MK-6240 monkey PET studies were conducted after dosing with unlabeled MK-6240 to evaluate tracer binding selectivity in vivo. RESULTS: The 3H-MK-6240 binding pattern was consistent with the distribution of phosphorylated tau in human AD brain slices. 3H-MK-6240 bound with high affinity to human AD brain cortex homogenates containing abundant NFTs but bound poorly to amyloid plaque-rich, NFT-poor AD brain homogenates. 3H-MK-6240 showed no displaceable binding in the subcortical regions of human AD brain slices and in the hippocampus/entorhinal cortex of non-AD human brain homogenates. In monkey PET studies, 18F-MK-6240 displayed rapid and homogeneous distribution in the brain. The 18F-MK-6240 volume of distribution stabilized rapidly, indicating favorable tracer kinetics. No displaceable binding was observed in self-block studies in rhesus monkeys, which do not natively express NFTs. Moderate defluorination was observed as skull uptake. CONCLUSION: 18F-MK-6240 is a promising PET tracer for the in vivo quantification of NFTs in AD patients.


Asunto(s)
Isoquinolinas/química , Ovillos Neurofibrilares , Tomografía de Emisión de Positrones/métodos , Animales , Autorradiografía , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Isoquinolinas/metabolismo , Macaca mulatta , Masculino , Trazadores Radiactivos , Radioquímica
9.
ACS Med Chem Lett ; 7(5): 498-501, 2016 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-27190600

RESUMEN

In our efforts to develop second generation DPP-4 inhibitors, we endeavored to identify distinct structures with long-acting (once weekly) potential. Taking advantage of X-ray cocrystal structures of sitagliptin and other DPP-4 inhibitors, such as alogliptin and linagliptin bound to DPP-4, and aided by molecular modeling, we designed several series of heterocyclic compounds as initial targets. During their synthesis, an unexpected chemical transformation provided a novel tricyclic scaffold that was beyond our original design. Capitalizing on this serendipitous discovery, we have elaborated this scaffold into a very potent and selective DPP-4 inhibitor lead series, as highlighted by compound 17c.

10.
J Med Chem ; 59(10): 4778-89, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27088900

RESUMEN

Neurofibrillary tangles (NFTs) made up of aggregated tau protein have been identified as the pathologic hallmark of several neurodegenerative diseases including Alzheimer's disease. In vivo detection of NFTs using PET imaging represents a unique opportunity to develop a pharmacodynamic tool to accelerate the discovery of new disease modifying therapeutics targeting tau pathology. Herein, we present the discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine, 6 ([(18)F]-MK-6240), as a novel PET tracer for detecting NFTs. 6 exhibits high specificity and selectivity for binding to NFTs, with suitable physicochemical properties and in vivo pharmacokinetics.


Asunto(s)
Descubrimiento de Drogas , Isoquinolinas/química , Imagen Molecular , Ovillos Neurofibrilares/patología , Tomografía de Emisión de Positrones , Radioisótopos de Flúor/química , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/farmacocinética , Estructura Molecular , Ovillos Neurofibrilares/metabolismo
11.
ACS Med Chem Lett ; 7(1): 111-6, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26819676

RESUMEN

We have been focused on identifying a structurally different next generation inhibitor to MK-5172 (our Ns3/4a protease inhibitor currently under regulatory review), which would achieve superior pangenotypic activity with acceptable safety and pharmacokinetic profile. These efforts have led to the discovery of a novel class of HCV NS3/4a protease inhibitors containing a unique spirocyclic-proline structural motif. The design strategy involved a molecular-modeling based approach, and the optimization efforts on the series to obtain pan-genotypic coverage with good exposures on oral dosing. One of the key elements in this effort was the spirocyclization of the P2 quinoline group, which rigidified and constrained the binding conformation to provide a novel core. A second focus of the team was also to improve the activity against genotype 3a and the key mutant variants of genotype 1b. The rational application of structural chemistry with molecular modeling guided the design and optimization of the structure-activity relationships have resulted in the identification of the clinical candidate MK-8831 with excellent pan-genotypic activity and safety profile.

12.
ChemMedChem ; 10(4): 727-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25759009

RESUMEN

With the goal of identifying inhibitors of hepatitis C virus (HCV) NS3/4a protease that are potent against a wide range of genotypes and clinically relevant mutant viruses, several subseries of macrocycles were investigated based on observations made during the discovery of MK-5172. Quinazolinone-containing macrocycles were identified as promising leads, and optimization for superior cross-genotype and mutant enzyme potency as well as rat liver and plasma concentrations following oral dosing, led to the development of MK-2748. Additional investigation of a series of bis-macrocycles containing a fused 18- and 15-membered ring system were also optimized for the same properties, leading to the discovery of MK-6325. Both compounds display the broad genotype and mutant potency necessary for clinical development as next-generation HCV NS3/4a protease inhibitors.


Asunto(s)
Antivirales/farmacología , Hepacivirus/enzimología , Compuestos Macrocíclicos/farmacología , Quinazolinonas/farmacología , Sulfonas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/química , Antivirales/farmacocinética , Cristalografía por Rayos X , Descubrimiento de Drogas , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Hepatitis C/tratamiento farmacológico , Hepatitis C/virología , Humanos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacocinética , Modelos Moleculares , Mutación , Quinazolinonas/química , Quinazolinonas/farmacocinética , Ratas , Sulfonas/farmacocinética , Proteínas no Estructurales Virales/genética
13.
ACS Med Chem Lett ; 5(3): 264-9, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24900818

RESUMEN

We have previously reported the discovery of our P2-P4 macrocyclic HCV NS3/4a protease inhibitor MK-5172, which in combination with the NS5a inhibitor MK-8742 recently received a breakthrough therapy designation from the US FDA for treatment of chronic HCV infection. Our goal for the next generation NS3/4a inhibitor was to achieve pan-genotypic activity while retaining the pharmacokinetic profile of MK-5172. One of the areas for follow-up investigation involved replacement of the quinoxaline moiety in MK-5172 with a quinoline and studying the effect of substitution at 4-position of the quinoline. The rationale for this effort was based on molecular modeling, which indicated that such modifications would improve interactions with the S2 subsite, in particular with D79. We wish to report herein the discovery of highly potent inhibitors with pan-genotypic activity and an improved profile over MK-5172, especially against gt-3a and A156 mutants.

14.
J Med Chem ; 57(6): 2601-10, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24527772

RESUMEN

A novel series of spiroimidazolone-based antagonists of the human glucagon receptor (hGCGR) has been developed. Our efforts have led to compound 1, N-((2H-tetrazol-5-yl)methyl)-4-((R)-1-((5r,8R)-8-(tert-butyl)-3-(3,5-dichlorophenyl)-2-oxo-1,4-diazaspiro[4.5]dec-3-en-1-yl)-4,4-dimethylpentyl)benzamide (SCH 900822), a potent hGCGR antagonist with exceptional selectivity over the human glucagon-like peptide-1 receptor. Oral administration of 1 lowered 24 h nonfasting glucose levels in imprinting control region mice on a high fat diet with diet-induced obesity following single oral doses of 3 and 10 mg/kg. Furthermore, compound 1, when dosed orally, was found to decrease fasting blood glucose at 30 mg/kg in a streptozotocin-treated, diet-induced obesity mouse pharmacodynamic assay and blunt exogenous glucagon-stimulated glucose excursion in prediabetic mice.


Asunto(s)
Benzamidas/síntesis química , Benzamidas/farmacología , Receptores de Glucagón/antagonistas & inhibidores , Compuestos de Espiro/síntesis química , Compuestos de Espiro/farmacología , Animales , Glucemia/metabolismo , Ciclohexanonas/química , Ciclohexanonas/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa , Descubrimiento de Drogas , Glucagón/farmacología , Ratones , Ratones Endogámicos ICR , Obesidad/tratamiento farmacológico , Estado Prediabético/tratamiento farmacológico , Estado Prediabético/metabolismo , Relación Estructura-Actividad
15.
Am J Hosp Palliat Care ; 31(1): 98-100, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23298874

RESUMEN

Diencephalic storms or paroxysmal sympathetic storms are characterized by episodic hyperhidrosis, hypertension, tachypnea, tachycardia, and abnormal posturing. These have been reported to occur in patients with hydrocephalus, intracranial tumors, and hypoxic, ischemic, or traumatic brain injury. They can be easily misdiagnosed as seizures, uncontrolled pheochromocytoma, drug withdrawal, thyroid storm, hypertensive crises, and sepsis or anxiety attacks. The most effective treatment to control these symptoms is yet to be identified. We present 2 individuals exhibiting these sympathetic surges; one whose symptoms were controlled with phenobarbital and the other with clonidine and oxycodone. Palliative medicine physicians should be made aware of this unusual complication.


Asunto(s)
Leucoencefalopatías/complicaciones , Neoplasias Meníngeas/complicaciones , Convulsiones/etiología , Adulto , Anticonvulsivantes/uso terapéutico , Femenino , Humanos , Masculino , Convulsiones/tratamiento farmacológico
16.
Antimicrob Agents Chemother ; 56(8): 4161-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22615282

RESUMEN

HCV NS3/4a protease inhibitors are proven therapeutic agents against chronic hepatitis C virus infection, with boceprevir and telaprevir having recently received regulatory approval as add-on therapy to pegylated interferon/ribavirin for patients harboring genotype 1 infections. Overcoming antiviral resistance, broad genotype coverage, and a convenient dosing regimen are important attributes for future agents to be used in combinations without interferon. In this communication, we report the preclinical profile of MK-5172, a novel P2-P4 quinoxaline macrocyclic NS3/4a protease inhibitor currently in clinical development. The compound demonstrates subnanomolar activity against a broad enzyme panel encompassing major hepatitis C virus (HCV) genotypes as well as variants resistant to earlier protease inhibitors. In replicon selections, MK-5172 exerted high selective pressure, which yielded few resistant colonies. In both rat and dog, MK-5172 demonstrates good plasma and liver exposures, with 24-h liver levels suggestive of once-daily dosing. When administered to HCV-infected chimpanzees harboring chronic gt1a or gt1b infections, MK-5172 suppressed viral load between 4 to 5 logs at a dose of 1 mg/kg of body weight twice daily (b.i.d.) for 7 days. Based on its preclinical profile, MK-5172 is anticipated to be broadly active against multiple HCV genotypes and clinically important resistance variants and highly suited for incorporation into newer all-oral regimens.


Asunto(s)
Hepacivirus/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Quinoxalinas/farmacología , Quinoxalinas/farmacocinética , Proteínas no Estructurales Virales/antagonistas & inhibidores , Amidas , Animales , Antivirales/farmacología , Carbamatos , Ciclopropanos , Perros , Farmacorresistencia Viral , Genotipo , Hepacivirus/enzimología , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Hígado/efectos de los fármacos , Pan troglodytes , Quinoxalinas/metabolismo , Ratas , Sulfonamidas , Carga Viral/efectos de los fármacos
17.
Cleve Clin J Med ; 78(3): 197-206, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21364165

RESUMEN

Malignant bowel obstruction requires a highly individualized approach, tailored to the patient's medical condition, prognosis, and goals of care. Surgery should not be routinely done. Less-invasive approaches such as gastric and colonic stenting are useful.


Asunto(s)
Neoplasias Intestinales/terapia , Obstrucción Intestinal/etiología , Obstrucción Intestinal/terapia , Cuidados Paliativos , Medicina de Precisión , Cuidado Terminal , Analgésicos/uso terapéutico , Antieméticos/uso terapéutico , Quimioterapia Combinada , Gastrostomía , Humanos , Neoplasias Intestinales/diagnóstico , Neoplasias Intestinales/fisiopatología , Obstrucción Intestinal/diagnóstico , Obstrucción Intestinal/fisiopatología , Intubación Gastrointestinal , Nutrición Parenteral Total , Stents
18.
Bioorg Med Chem Lett ; 19(23): 6507-14, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19875284

RESUMEN

The biotin carboxylase (AccC) is part of the multi-component bacterial acetyl coenzyme-A carboxylase (ACCase) and is essential for pathogen survival. We describe herein the affinity optimization of an initial hit to give 2-(2-chlorobenzylamino)-1-(cyclohexylmethyl)-1H-benzo[d]imidazole-5-carboxamide (1), which was identified using our proprietary Automated Ligand Identification System (ALIS).(1) The X-ray co-crystal structure of 1 was solved and revealed several key interactions and opportunities for further optimization in the ATP site of AccC. Structure Based Drug Design (SBDD) and parallel synthetic approaches resulted in a novel series of AccC inhibitors, exemplified by (R)-2-(2-chlorobenzylamino)-1-(2,3-dihydro-1H-inden-1-yl)-1H-imidazo[4,5-b]pyridine-5-carboxamide (40). This compound is a potent and selective inhibitor of bacterial AccC with an IC(50) of 20 nM and a MIC of 0.8 microg/mL against a sensitized strain of Escherichia coli (HS294 E. coli).


Asunto(s)
Antibacterianos/farmacología , Bencimidazoles/farmacología , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Imidazoles/farmacología , Ácidos Nicotínicos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Bencimidazoles/síntesis química , Bencimidazoles/química , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Imidazoles/síntesis química , Imidazoles/química , Ligandos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Ácidos Nicotínicos/síntesis química , Ácidos Nicotínicos/química , Relación Estructura-Actividad
19.
Anal Biochem ; 349(2): 268-76, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16325142

RESUMEN

Bacterial acetyl-coenzyme A carboxylase (ACCase) is a multicomponent system composed of AccA, AccD, AccC, and AccB (also known as BCCP), which is required for fatty acid biosynthesis. It is essential for cell growth and has been chemically validated as a target for antimicrobial drug discovery. To identify ACCase inhibitors, a simple and robust assay that monitors the overall activity by measuring phosphate production at physiologically relevant concentrations of all protein components was developed. Inorganic phosphate production was demonstrated to directly reflect the coupled activities of AccC and AccA/D with BCCP cycling between the two half-reactions. The K(m) apparent values for ATP, acetyl-coenzyme A, and BCCP were estimated to be 60+/-14 microM, 18+/-4 microM, and 39+/-9 nM, respectively. The stoichiometry between the two half-reactions was measured to be 1:1. Carboxy-biotin produced in the first half-reaction was stable over the time course of the assay. The assay was adapted to a high-throughput screen (HTS) 384-well format using a modified published scintillation proximity method. The optimized HTS assay has acceptable Z' factor values and was validated to report inhibitions of either AccC or AccA/D. The assay is not susceptible to signal quenching due to colored compounds.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Escherichia coli/enzimología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/aislamiento & purificación , Adenosina Trifosfato/metabolismo , Catálisis , Cromatografía Líquida de Alta Presión , Fosfatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
20.
Bioorg Med Chem Lett ; 14(9): 2275-7, 2004 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-15081024

RESUMEN

The 70% aqueous methanolic extract of the Peruvian plant Polygonum cuspidatum sp. was found to contain two novel phenolic saccharides 1 and 2, which were identified as inhibitors of the bacterial DNA primase enzyme. Structures of these two compounds were established based on high resolution NMR studies. Compound 1 and 2 inhibited the primase enzyme with an IC(50) of 4 and 5 microM, respectively.


Asunto(s)
Bacterias/enzimología , ADN Primasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fallopia japonica/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA