Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 180: 106083, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931532

RESUMEN

Rett syndrome (RTT) is a X-linked neurodevelopmental disorder which represents the leading cause of severe incurable intellectual disability in females worldwide. The vast majority of RTT cases are caused by mutations in the X-linked MECP2 gene, and preclinical studies on RTT largely benefit from the use of mouse models of Mecp2, which present a broad spectrum of symptoms phenocopying those manifested by RTT patients. Neurons represent the core targets of the pathology; however, neuroanatomical abnormalities that regionally characterize the Mecp2 deficient mammalian brain remain ill-defined. Neuroimaging techniques, such as MRI and MRS, represent a key approach for assessing in vivo anatomic and metabolic changes in brain. Being non-invasive, these analyses also permit to investigate how the disease progresses over time through longitudinal studies. To foster the biological comprehension of RTT and identify useful biomarkers, we have performed a thorough in vivo longitudinal study of MRI and MRS in Mecp2 deficient mouse brains. Analyses were performed on both genders of two different mouse models of RTT, using an automatic atlas-based segmentation tool that permitted to obtain a detailed and unbiased description of the whole RTT mouse brain. We found that the most robust alteration of the RTT brain consists in an overall reduction of the brain volume. Accordingly, Mecp2 deficiency generally delays brain growth, eventually leading, in heterozygous older animals, to stagnation and/or contraction. Most but not all brain regions participate in the observed deficiency in brain size; similarly, the volumetric defect progresses diversely in different brain areas also depending on the specific Mecp2 genetic lesion and gender. Interestingly, in some regions volumetric defects anticipate overt symptoms, possibly revealing where the pathology originates and providing a useful biomarker for assessing drug efficacy in pre-clinical studies.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Síndrome de Rett , Femenino , Ratones , Masculino , Animales , Estudios Longitudinales , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/diagnóstico por imagen , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Encéfalo/metabolismo , Mutación , Imagen por Resonancia Magnética , Mamíferos/metabolismo
2.
J Parkinsons Dis ; 12(6): 1881-1896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35466951

RESUMEN

BACKGROUND: First-in-human studies to test the efficacy and safety of human embryonic stem cells (hESC)-derived dopaminergic cells in the treatment of Parkinson's disease (PD) are imminent. Pre-clinical studies using hESC-derived dopamine neuron transplants in rat models have indicated that the benefits parallel those shown with fetal tissue but have thus far failed to consider how ongoing L-DOPA administration might impact on the graft. OBJECTIVE: To determine whether L-DOPA impacts on survival and functional recovery following grafting of hESC-derived dopaminergic neurons. METHODS: Unilateral 6-OHDA lesioned rats were administered with either saline or L-DOPA prior to, and for 18 weeks following surgical implantation of dopaminergic neural progenitors derived from RC17 hESCs according to two distinct protocols in independent laboratories. RESULTS: Grafts from both protocols elicited reduction in amphetamine-induced rotations. Reduced L-DOPA-induced dyskinesia preceded the improvement in amphetamine-induced rotations. Furthermore, L-DOPA had no effect on overall survival (HuNu) or dopaminergic neuron content of the graft (TH positive cells) but did lead to an increase in the number of GIRK2 positive neurons. CONCLUSION: Critically, we found that L-DOPA was not detrimental to graft function, potentially enhancing graft maturation and promoting an A9 phenotype. Early improvement of L-DOPA-induced dyskinesia suggests that grafts may support the handling of exogenously supplied dopamine earlier than improvements in amphetamine-induced behaviours indicate. Given that one of the protocols will be employed in the production of cells for the European STEM-PD clinical trial, this is vital information for the management of patients and achieving optimal outcomes following transplantation of hESC-derived grafts for PD.


Asunto(s)
Discinesia Inducida por Medicamentos , Células Madre Embrionarias Humanas , Enfermedad de Parkinson , Anfetaminas/uso terapéutico , Animales , Antiparkinsonianos/uso terapéutico , Modelos Animales de Enfermedad , Dopamina , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Humanos , Levodopa/uso terapéutico , Oxidopamina/uso terapéutico , Oxidopamina/toxicidad , Enfermedad de Parkinson/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
3.
Front Neurosci ; 16: 823060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242007

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder that represents the most common genetic cause of severe intellectual disability in females. Most patients carry mutations in the X-linked MECP2 gene, coding for the methyl-CpG-binding protein 2 (MeCP2), originally isolated as an epigenetic transcriptional factor able to bind methylated DNA and repress transcription. Recent data implicated a role for glia in RTT, showing that astrocytes express Mecp2 and that its deficiency affects their ability to support neuronal maturation by non-cell autonomous mechanisms. To date, some molecular, structural and functional alterations have been attributed to Mecp2 null astrocytes, but how they evolve over time and whether they follow a spatial heterogeneity are two aspects which deserve further investigations. In this study, we assessed cytoskeletal features of astrocytes in Mecp2 deficient brains by analyzing their arbor complexity and processes in reconstructed GFAP+ cells at different ages, corresponding to peculiar stages of the disorder, and in different cerebral regions (motor and somatosensory cortices and CA1 layer of hippocampus). Our findings demonstrate the presence of defects in Mecp2 null astrocytes that worsen along disease progression and strictly depend on the brain area, highlighting motor and somatosensory cortices as the most affected regions. Of relevance, astrocyte cytoskeleton is impaired also in the somatosensory cortex of symptomatic heterozygous animals, with Mecp2 + astrocytes showing slightly more pronounced defects with respect to the Mecp2 null cells, emphasizing the importance of non-cell autonomous effects. We reported a temporal correlation between the progressive thinning of layer I and the atrophy of astrocytes, suggesting that their cytoskeletal dysfunctions might contribute to cortical defects. Considering the reciprocal link between morphology and function in astrocytes, we analyzed the effect of Mecp2 deficiency on the expression of selected astrocyte-enriched genes, which describe typical astrocytic features. qRT-PCR data corroborated our results, reporting an overall decrement of gene expression, which is area and age-dependent. In conclusion, our data show that Mecp2 deficiency causes structural and molecular alterations in astrocytes, which progress along with the severity of symptoms and diversely occur in the different cerebral regions, highlighting the importance of considering heterogeneity when studying astrocytes in RTT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...