Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 22(21): 8626-8632, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36256878

RESUMEN

Organometallic sandwich complexes are versatile molecular systems that have been recently employed for single-molecule manipulation and spin sensing experiments. Among related organometallic compounds, the mixed-sandwich S = 1/2 complex (η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium, here [CpTi(cot)], has attracted interest as a spin qubit because of the long coherence time. Here the structural and chemical properties of [CpTi(cot)] on Au(111) are investigated at the monolayer level by experimental and computational methods. Scanning tunneling microscopy suggests that adsorption occurs in two molecular orientations, lying and standing, with a 3:1 ratio. XPS data evidence that a fraction of the molecules undergo partial electron transfer to gold, while our computational analysis suggests that only the standing molecules experience charge delocalization toward the surface. Such a phenomenon depends on intermolecular interactions that stabilize the molecular packing in the monolayer. This orientation-dependent molecule-surface hybridization opens exciting perspectives for selective control of the molecule-substrate spin delocalization in hybrid interfaces.


Asunto(s)
Electrones , Titanio , Propiedades de Superficie , Microscopía de Túnel de Rastreo/métodos , Adsorción
2.
Nat Commun ; 13(1): 3838, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788608

RESUMEN

Superconductors and magnetic materials, including molecules, are key ingredients for quantum computing and spintronics. However, only a little is known about how these materials interact in multilayer nanostructures like the hybrid architectures nowadays under development for such advanced applications. Here, we show that a single layer of magnetic molecules, Terbium(III) bis-phthalocyaninato (TbPc2) complexes, deposited under controlled UHV conditions on a superconducting Pb(111) surface is sensitive to the topology of the intermediate state of the superconductor, namely to the presence and evolution of superconducting and normal domains due to screening and penetration of an external magnetic field. The topological hysteresis of the superconducting substrate imprints a local evolution of the magnetisation of the TbPc2 molecules in the monolayer. Element and surface selective detection is achieved by recording the X-ray magnetic circular dichroism of the Tb atoms. This study reveals the impressive potential of magnetic molecules for sensing local magnetic field variations in molecular/superconductor hybrid devices, including spin resonators or spin injecting and spin filtering components for spintronics applications.

3.
Phys Chem Chem Phys ; 23(21): 12060-12067, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34013308

RESUMEN

A terbium(iii)-bis(phthalocyaninato) neutral complex was deposited on the rutile TiO2(110) surface, and their interaction was studied by Scanning Tunneling Microscopy (STM) and X-ray Photoelectron Spectroscopy (XPS). It was found that the TiO2 rutile surface favours the adsorption of isolated molecules adopting a lying down configuration with the phthalocyanine planes tilted by about 30° when they lie in the first layer. The electronic and chemical properties of the molecules on the surface were studied by XPS as a function of the TiO2(110) substrate preparation. This study evidences that strong molecule-substrate interactions are present and a charge transfer process occurs from the molecule to the surface.

4.
Angew Chem Int Ed Engl ; 60(28): 15276-15280, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33904633

RESUMEN

In the past few years, the chirality and magnetism of molecules have received notable interest for the development of novel molecular devices. Chiral helicenes combine both these properties, and thus their nanostructuration is the first step toward developing new multifunctional devices. Here, we present a novel strategy to deposit a sub-monolayer of enantiopure thia[4]helicene radical cations on a pre-functionalized Au(111) substrate. This approach results in both the paramagnetic character and the chemical structure of these molecules being maintained at the nanoscale, as demonstrated by in-house characterizations. Furthermore, synchrotron-based X-ray natural circular dichroism confirmed that the handedness of the thia[4]helicene is preserved on the surface.

5.
Nat Mater ; 19(5): 546-551, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32066930

RESUMEN

Magnetic materials interfaced with superconductors may reveal new physical phenomena with potential for quantum technologies. The use of molecules as magnetic components has already shown great promise, but the diversity of properties offered by the molecular realm remains largely unexplored. Here we investigate a submonolayer of tetrairon(III) propeller-shaped single molecule magnets deposited on a superconducting lead surface. This material combination reveals a strong influence of the superconductor on the spin dynamics of the single molecule magnet. It is shown that the superconducting transition to the condensate state switches the single molecule magnet from a blocked magnetization state to a resonant quantum tunnelling regime. Our results open perspectives to control single molecule magnetism via superconductors and to use single molecule magnets as local probes of the superconducting state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...