Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5530, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956021

RESUMEN

Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.5 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and ß-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.


Asunto(s)
Microscopía por Crioelectrón , Cinesinas , Microtúbulos , Tubulina (Proteína) , Cinesinas/metabolismo , Cinesinas/genética , Cinesinas/química , Microtúbulos/metabolismo , Humanos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Unión Proteica , Mutación , Modelos Moleculares , Conformación Proteica
2.
Open Biol ; 13(9): 230122, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37726093

RESUMEN

KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 has been reported, but little is known about how its divergent sequence leads to atypical motility properties. We present here the first high-resolution structure of its motor domain that delineates the highly unusual structural features of this motor, including a long L6 insertion that integrates into the core of the motor domain and that drastically affects allostery and ATPase activity. Together with the high-resolution cryo-electron microscopy microtubule-bound KIF20A structure that reveals the microtubule-binding interface, we dissect the peculiarities of the KIF20A sequence that influence its mechanochemistry, leading to low motility compared to other kinesins. Structural and functional insights from the KIF20A pre-power stroke conformation highlight the role of extended insertions in shaping the motor's mechanochemical cycle. Essential for force production and processivity is the length of the neck linker in kinesins. We highlight here the role of the sequence preceding the neck linker in controlling its backward docking and show that a neck linker four times longer than that in kinesin-1 is required for the activity of this motor.


Asunto(s)
Cinesinas , Microtúbulos , Microscopía por Crioelectrón , Cinesinas/genética , Sitios de Unión , División Celular
3.
Biochem Soc Trans ; 51(4): 1505-1520, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37560910

RESUMEN

Kinesin motor proteins couple mechanical movements in their motor domain to the binding and hydrolysis of ATP in their nucleotide-binding pocket. Forces produced through this 'mechanochemical' coupling are typically used to mobilize kinesin-mediated transport of cargos along microtubules or microtubule cytoskeleton remodeling. This review discusses the recent high-resolution structures (<4 Å) of kinesins bound to microtubules or tubulin complexes that have resolved outstanding questions about the basis of mechanochemical coupling, and how family-specific modifications of the motor domain can enable its use for motility and/or microtubule depolymerization.


Asunto(s)
Cinesinas , Tubulina (Proteína) , Cinesinas/metabolismo , Tubulina (Proteína)/análisis , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Adenosina Trifosfato/metabolismo , Microtúbulos/metabolismo , Miosinas
4.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36778368

RESUMEN

Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.4 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and ß-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.

5.
Nat Commun ; 13(1): 4198, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859148

RESUMEN

Kinesin-8s are dual-activity motor proteins that can move processively on microtubules and depolymerize microtubule plus-ends, but their mechanism of combining these distinct activities remains unclear. We addressed this by obtaining cryo-EM structures (2.6-3.9 Å) of Candida albicans Kip3 in different catalytic states on the microtubule lattice and on a curved microtubule end mimic. We also determined a crystal structure of microtubule-unbound CaKip3-ADP (2.0 Å) and analyzed the biochemical activity of CaKip3 and kinesin-1 mutants. These data reveal that the microtubule depolymerization activity of kinesin-8 originates from conformational changes of its motor core that are amplified by dynamic contacts between its extended loop-2 and tubulin. On curved microtubule ends, loop-1 inserts into preceding motor domains, forming head-to-tail arrays of kinesin-8s that complement loop-2 contacts with curved tubulin and assist depolymerization. On straight tubulin protofilaments in the microtubule lattice, loop-2-tubulin contacts inhibit conformational changes in the motor core, but in the ADP-Pi state these contacts are relaxed, allowing neck-linker docking for motility. We propose that these tubulin shape-induced alternations between pro-microtubule-depolymerization and pro-motility kinesin states, regulated by loop-2, are the key to the dual activity of kinesin-8 motors.


Asunto(s)
Cinesinas , Tubulina (Proteína) , Adenosina Difosfato/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
6.
Nat Commun ; 12(1): 3637, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131133

RESUMEN

KIF14 is a mitotic kinesin whose malfunction is associated with cerebral and renal developmental defects and several cancers. Like other kinesins, KIF14 couples ATP hydrolysis and microtubule binding to the generation of mechanical work, but the coupling mechanism between these processes is still not fully clear. Here we report 20 high-resolution (2.7-3.9 Å) cryo-electron microscopy KIF14-microtubule structures with complementary functional assays. Analysis procedures were implemented to separate coexisting conformations of microtubule-bound monomeric and dimeric KIF14 constructs. The data provide a comprehensive view of the microtubule and nucleotide induced KIF14 conformational changes. It shows that: 1) microtubule binding, the nucleotide species, and the neck-linker domain govern the transition between three major conformations of the motor domain; 2) an undocked neck-linker prevents the nucleotide-binding pocket to fully close and dampens ATP hydrolysis; 3) 13 neck-linker residues are required to assume a stable docked conformation; 4) the neck-linker position controls the hydrolysis rather than the nucleotide binding step; 5) the two motor domains of KIF14 dimers adopt distinct conformations when bound to the microtubule; and 6) the formation of the two-heads-bound-state introduces structural changes in both motor domains of KIF14 dimers. These observations provide the structural basis for a coordinated chemo-mechanical kinesin translocation model.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Microscopía por Crioelectrón , Cinesinas/genética , Ligandos , Ratones , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Oncogénicas/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos
7.
Drug Metab Dispos ; 48(3): 198-204, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31892527

RESUMEN

The 20 uridine diphosphate glycosyl-transferases (UGTs) encoded in the human genome form an essential homeostatic network of overlapping catalytic functions that surveil and regulate the activity and clearance of scores of small molecule metabolites. Biochemical and biophysical UGT studies have been hampered by the inability to purify these membrane-bound proteins. Here, using cell-free expression and nanodisc technology, we assemble and purify to homogeneity the first UGT nanodisc-the human UGT2B7•nanodisc. The complex is readily isolated in milligram quantities. It is stable and its initial-rate parameters are identical within error to those associated with UGT2B7 in microsomal preparations (i.e., Supersomes). The high purity of the nanodisc preparation simplifies UGT assays, which allows complexities traditionally associated with microsomal assays (latency and the albumin effect) to be circumvented. Each nanodisc is shown to harbor a single UGT2B7 monomer. The methods described herein should be widely applicable to UGTs, and these findings are expected to set the stage for experimentalists to more freely explore the structure, function, and biology of this important area of phase II metabolism. SIGNIFICANCE STATEMENT: Lack of access to pure, catalytically competent human uridine diphosphate glucuronosyl-transferases (UGTs) has long been an impediment to biochemical and biophysical studies of this disease-relevant enzyme family. Here, we demonstrate this barrier can be removed using nanodisc technology-a human UGT2B7•nanodisc is assembled, purified to homogeneity, and shown to have activity comparable to microsomal UGT2B7.


Asunto(s)
Glucuronosiltransferasa/metabolismo , Humanos , Hígado/metabolismo , Microsomas Hepáticos/metabolismo
8.
Curr Biol ; 29(14): 2259-2269.e4, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31280993

RESUMEN

Besides sliding apart antiparallel microtubules during spindle elongation, the mitotic kinesin-5, Eg5, promotes microtubule polymerization, emphasizing its importance in mitotic spindle length control. Here, we characterize the Eg5 microtubule polymerase mechanism by assessing motor-induced changes in the longitudinal and lateral tubulin-tubulin bonds that form the microtubule lattice. Isolated Eg5 motor domains promote microtubule nucleation, growth, and stability; thus, crosslinking tubulin by pairs of motor heads is not necessary for polymerase activity. Eg5 binds preferentially to microtubules over free tubulin, which contrasts with microtubule-depolymerizing kinesins that preferentially bind free tubulin over microtubules. Colchicine-like inhibitors that stabilize the bent conformation of tubulin allosterically inhibit Eg5 binding, consistent with a model in which Eg5 induces a curved-to-straight transition in tubulin. Domain swap experiments establish that the family-specific loop11-helix 4 junction, which resides near the nucleotide-sensing switch-II domain, is necessary and sufficient for the polymerase activity of Eg5. Thus, we propose a microtubule polymerase mechanism in which Eg5 at the plus-end promotes a curved-to-straight transition in tubulin that enhances lateral bond formation and thereby promotes microtubule growth and stability. One implication is that regulation of Eg5 motile properties by regulatory proteins or small molecule inhibitors could also have effects on intracellular microtubule dynamics.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/fisiología , Animales , ADN Polimerasa Dirigida por ADN/metabolismo
9.
Nat Commun ; 9(1): 2748, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992962

RESUMEN

The previously published version of this Article contained an error in Fig. 5. In panels f and g, the α and ß symbols were swapped. The error has been corrected in both the PDF and HTML versions of the Article.

10.
Nat Commun ; 9(1): 1662, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695795

RESUMEN

Kinesin-13s constitute a distinct group within the kinesin superfamily of motor proteins that promote microtubule depolymerization and lack motile activity. The molecular mechanism by which kinesin-13s depolymerize microtubules and are adapted to perform a seemingly very different activity from other kinesins is still unclear. To address this issue, here we report the near atomic resolution cryo-electron microscopy (cryo-EM) structures of Drosophila melanogaster kinesin-13 KLP10A protein constructs bound to curved or straight tubulin in different nucleotide states. These structures show how nucleotide induced conformational changes near the catalytic site are coupled with movement of the kinesin-13-specific loop-2 to induce tubulin curvature leading to microtubule depolymerization. The data highlight a modular structure that allows similar kinesin core motor-domains to be used for different functions, such as motility or microtubule depolymerization.


Asunto(s)
Proteínas de Drosophila/ultraestructura , Cinesinas/ultraestructura , Microtúbulos/ultraestructura , Tubulina (Proteína)/ultraestructura , Adenosina Trifosfato/metabolismo , Movimiento Celular , Microscopía por Crioelectrón , Proteínas de Drosophila/química , Proteínas de Drosophila/aislamiento & purificación , Cinesinas/química , Cinesinas/aislamiento & purificación , Microtúbulos/metabolismo , Simulación del Acoplamiento Molecular , Polimerizacion , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/ultraestructura , Tubulina (Proteína)/química
11.
Methods Mol Biol ; 1665: 199-216, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28940071

RESUMEN

Single molecule fluorescence polarization microscopy (smFPM) is a technique that enables to monitor changes in the orientation of a single labeled protein domain. Here we describe a smFPM microscope set-up and protocols to investigate conformational changes associated with the movement of motor proteins along cytoskeletal tracks.


Asunto(s)
Polarización de Fluorescencia/métodos , Cinesinas/química , Microtúbulos/química , Proteínas Motoras Moleculares/química , Unión Proteica , Conformación Proteica
12.
Biophys J ; 110(7): 1593-1604, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27074684

RESUMEN

Kinesins-13s are members of the kinesin superfamily of motor proteins that depolymerize microtubules (MTs) and have no motile activity. Instead of generating unidirectional movement over the MT lattice, like most other kinesins, kinesins-13s undergo one-dimensional diffusion (ODD) and induce depolymerization at the MT ends. To understand the mechanism of ODD and the origin of the distinct kinesin-13 functionality, we used ensemble and single-molecule fluorescence polarization microscopy to analyze the behavior and conformation of Drosophila melanogaster kinesin-13 KLP10A protein constructs bound to the MT lattice. We found that KLP10A interacts with the MT in two coexisting modes: one in which the motor domain binds with a specific orientation to the MT lattice and another where the motor domain is very mobile and able to undergo ODD. By comparing the orientation and dynamic behavior of mutated and deletion constructs we conclude that 1) the Kinesin-13 class specific neck domain and loop-2 help orienting the motor domain relative to the MT. 2) During ODD the KLP10A motor-domain changes orientation rapidly (rocks or tumbles). 3) The motor domain alone is capable of undergoing ODD. 4) A second tubulin binding site in the KLP10A motor domain is not critical for ODD. 5) The neck domain is not the element preventing KLP10A from binding to the MT lattice like motile kinesins.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Cinesinas/metabolismo , Microtúbulos/metabolismo , Animales , Proteínas de Drosophila/química , Cinesinas/química , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Rotación
13.
J Mol Biol ; 426(17): 2997-3015, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-24949858

RESUMEN

The mitotic kinesin motor protein KIF14 is essential for cytokinesis during cell division and has been implicated in cerebral development and a variety of human cancers. Here we show that the mouse KIF14 motor domain binds tightly to microtubules and does not display typical nucleotide-dependent changes in this affinity. It also has robust ATPase activity but very slow motility. A crystal structure of the ADP-bound form of the KIF14 motor domain reveals a dramatically opened ATP-binding pocket, as if ready to exchange its bound ADP for Mg·ATP. In this state, the central ß-sheet is twisted ~10° beyond the maximal amount observed in other kinesins. This configuration has only been seen in the nucleotide-free states of myosins-known as the "rigor-like" state. Fitting of this atomic model to electron density maps from cryo-electron microscopy indicates a distinct binding configuration of the motor domain to microtubules. We postulate that these properties of KIF14 are well suited for stabilizing midbody microtubules during cytokinesis.


Asunto(s)
Cinesinas/química , Microtúbulos/química , Adenosina Difosfato/química , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Ratones , Microtúbulos/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína
14.
PLoS One ; 8(8): e73075, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24015286

RESUMEN

Kinesin-13s are microtubule (MT) depolymerases different from most other kinesins that move along MTs. Like other kinesins, they have a motor or head domain (HD) containing a tubulin and an ATP binding site. Interestingly, kinesin-13s have an additional binding site (Kin-Tub-2) on the opposite side of the HD that contains several family conserved positively charged residues. The role of this site in kinesin-13 function is not clear. To address this issue, we investigated the in-vitro and in-vivo effects of mutating Kin-Tub-2 family conserved residues on the Drosophila melanogaster kinesin-13, KLP10A. We show that the Kin-Tub-2 site enhances tubulin cross-linking and MT bundling properties of KLP10A in-vitro. Disruption of the Kin-Tub-2 site, despite not having a deleterious effect on MT depolymerization, results in abnormal mitotic spindles and lagging chromosomes during mitosis in Drosophila S2 cells. The results suggest that the additional Kin-Tub-2 tubulin biding site plays a direct MT attachment role in-vivo.


Asunto(s)
Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Tubulina (Proteína)/metabolismo , Animales , Sitios de Unión/fisiología , Línea Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Cinesinas/química , Cinesinas/genética , Microtúbulos/química , Microtúbulos/genética , Mutación , Estructura Terciaria de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
15.
Cell Rep ; 3(3): 759-68, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23434508

RESUMEN

To elucidate the structural basis of the mechanism of microtubule depolymerization by kinesin-13s, we analyzed complexes of tubulin and the Drosophila melanogaster kinesin-13 KLP10A by electron microscopy (EM) and fluorescence polarization microscopy. We report a nanometer-resolution (1.1 nm) cryo-EM three-dimensional structure of the KLP10A head domain (KLP10AHD) bound to curved tubulin. We found that binding of KLP10AHD induces a distinct tubulin configuration with displacement (shear) between tubulin subunits in addition to curvature. In this configuration, the kinesin-binding site differs from that in straight tubulin, providing an explanation for the distinct interaction modes of kinesin-13s with the microtubule lattice or its ends. The KLP10AHD-tubulin interface comprises three areas of interaction, suggesting a crossbow-type tubulin-bending mechanism. These areas include the kinesin-13 family conserved KVD residues, and as predicted from the crossbow model, mutating these residues changes the orientation and mobility of KLP10AHDs interacting with the microtubule.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Cinesinas/química , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Tubulina (Proteína)/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestructura , Drosophila melanogaster/química , Cinesinas/metabolismo , Cinesinas/ultraestructura , Microtúbulos/ultraestructura , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura
16.
Cell Cycle ; 11(12): 2359-66, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22672901

RESUMEN

Fidgetin is a member of the AAA protein superfamily with important roles in mammalian development. Here we show that human Fidgetin is a potent microtubule severing and depolymerizing the enzyme used to regulate mitotic spindle architecture, dynamics and anaphase A. In vitro, recombinant human Fidgetin severs taxol-stabilized microtubules along their length and promotes depolymerization, primarily from their minus-ends. In cells, human Fidgetin targets to centrosomes, and its depletion with siRNA significantly reduces the velocity of poleward tubulin flux and anaphase A chromatid-to-pole motion. In addition, the loss of Fidgetin induces a microtubule-dependent enlargement of mitotic centrosomes and an increase in the number and length of astral microtubules. Based on these data, we propose that human Fidgetin actively suppresses microtubule growth from and attachment to centrosomes.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Anafase , Línea Celular Tumoral , Centrosoma/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
17.
Nat Cell Biol ; 13(4): 361-70, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21378981

RESUMEN

Regulation of microtubule dynamics at the cell cortex is important for cell motility, morphogenesis and division. Here we show that the Drosophila katanin Dm-Kat60 functions to generate a dynamic cortical-microtubule interface in interphase cells. Dm-Kat60 concentrates at the cell cortex of S2 Drosophila cells during interphase, where it suppresses the polymerization of microtubule plus-ends, thereby preventing the formation of aberrantly dense cortical arrays. Dm-Kat60 also localizes at the leading edge of migratory D17 Drosophila cells and negatively regulates multiple parameters of their motility. Finally, in vitro, Dm-Kat60 severs and depolymerizes microtubules from their ends. On the basis of these data, we propose that Dm-Kat60 removes tubulin from microtubule lattice or microtubule ends that contact specific cortical sites to prevent stable and/or lateral attachments. The asymmetric distribution of such an activity could help generate regional variations in microtubule behaviours involved in cell migration.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Movimiento Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Microtúbulos/metabolismo , Adenosina Trifosfatasas/genética , Animales , Ciclo Celular/fisiología , Línea Celular , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/ultraestructura , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Humanos , Katanina , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Interferencia de ARN , Tubulina (Proteína)/metabolismo
18.
Methods Cell Biol ; 95: 505-19, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20466150

RESUMEN

Fluorescence polarization microscopy (FPM) is the analysis of the polarization of light in a fluorescent microscope in order to determine the angular orientation and rotational mobility of fluorescent molecules. Key advantages of FPM, relative to other structural analysis techniques, are that it allows the detection of conformational changes of fluorescently labeled macromolecules in real time in physiological conditions and at the single-molecule level. In this chapter we describe in detail the FPM experimental set-up and analysis methods we have used to investigate structural intermediates of the motor protein kinesin-1 associated with its walking mechanism along microtubules. We also briefly describe additional FPM methods that have been used to investigate other macromolecular complexes.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Microscopía Fluorescente/métodos , Microtúbulos/química , Microtúbulos/metabolismo , Animales , Polarización de Fluorescencia/instrumentación , Polarización de Fluorescencia/métodos , Humanos , Microscopía Fluorescente/instrumentación , Modelos Biológicos , Unión Proteica , Conformación Proteica , Multimerización de Proteína
19.
Mol Biol Cell ; 20(22): 4696-705, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19793918

RESUMEN

Chromosome movements are linked to the active depolymerization of spindle microtubule (MT) ends. Here we identify the kinesin-13 family member, KLP59D, as a novel and uniquely important regulator of spindle MT dynamics and chromosome motility in Drosophila somatic cells. During prometaphase and metaphase, depletion of KLP59D, which targets to centrosomes and outer kinetochores, suppresses the depolymerization of spindle pole-associated MT minus ends, thereby inhibiting poleward tubulin Flux. Subsequently, during anaphase, loss of KLP59D strongly attenuates chromatid-to-pole motion by suppressing the depolymerization of both minus and plus ends of kinetochore-associated MTs. The mechanism of KLP59D's impact on spindle MT plus and minus ends appears to differ. Our data support a model in which KLP59D directly depolymerizes kinetochore-associated plus ends during anaphase, but influences minus ends indirectly by localizing the pole-associated MT depolymerase KLP10A. Finally, electron microscopy indicates that, unlike the other Drosophila kinesin-13s, KLP59D is largely incapable of oligomerizing into MT-associated rings in vitro, suggesting that such structures are not a requisite feature of kinetochore-based MT disassembly and chromosome movements.


Asunto(s)
Cromosomas/metabolismo , Proteínas de Drosophila/metabolismo , Exorribonucleasas/metabolismo , Cinesinas/metabolismo , Animales , Ciclo Celular/fisiología , Cromosomas/ultraestructura , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Exorribonucleasas/genética , Cinesinas/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Interferencia de ARN , Huso Acromático/metabolismo
20.
J Cell Biol ; 186(4): 481-90, 2009 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-19687256

RESUMEN

Microtubule (MT)-destabilizing kinesin 13s perform fundamental roles throughout the cell cycle. In this study, we show that the Drosophila melanogaster kinesin 13, KLP10A, is phosphorylated in vivo at a conserved serine (S573) positioned within the alpha-helix 5 of the motor domain. In vitro, a phosphomimic KLP10A S573E mutant displays a reduced capacity to depolymerize MTs but normal affinity for the MT lattice. In cells, replacement of endogenous KLP10A with KLP10A S573E dampens MT plus end dynamics throughout the cell cycle, whereas a nonphosphorylatable S573A mutant apparently enhances activity during mitosis. Electron microscopy suggests that KLP10A S573 phosphorylation alters its association with the MT lattice, whereas molecular dynamics simulations reveal how KLP10A phosphorylation can alter the kinesin-MT interface without changing important structural features within the motor's core. Finally, we identify casein kinase 1alpha as a possible candidate for KLP10A phosphorylation. We propose a model in which phosphorylation of the KLP10A motor domain provides a regulatory switch controlling the time and place of MT depolymerization.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Animales , Caseína Quinasa Ialfa/genética , Caseína Quinasa Ialfa/metabolismo , Línea Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Cinesinas/química , Cinesinas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...