Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36778368

RESUMEN

Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.4 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and ß-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.

2.
Cell Cycle ; 11(12): 2359-66, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22672901

RESUMEN

Fidgetin is a member of the AAA protein superfamily with important roles in mammalian development. Here we show that human Fidgetin is a potent microtubule severing and depolymerizing the enzyme used to regulate mitotic spindle architecture, dynamics and anaphase A. In vitro, recombinant human Fidgetin severs taxol-stabilized microtubules along their length and promotes depolymerization, primarily from their minus-ends. In cells, human Fidgetin targets to centrosomes, and its depletion with siRNA significantly reduces the velocity of poleward tubulin flux and anaphase A chromatid-to-pole motion. In addition, the loss of Fidgetin induces a microtubule-dependent enlargement of mitotic centrosomes and an increase in the number and length of astral microtubules. Based on these data, we propose that human Fidgetin actively suppresses microtubule growth from and attachment to centrosomes.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Anafase , Línea Celular Tumoral , Centrosoma/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
3.
Nat Cell Biol ; 13(4): 361-70, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21378981

RESUMEN

Regulation of microtubule dynamics at the cell cortex is important for cell motility, morphogenesis and division. Here we show that the Drosophila katanin Dm-Kat60 functions to generate a dynamic cortical-microtubule interface in interphase cells. Dm-Kat60 concentrates at the cell cortex of S2 Drosophila cells during interphase, where it suppresses the polymerization of microtubule plus-ends, thereby preventing the formation of aberrantly dense cortical arrays. Dm-Kat60 also localizes at the leading edge of migratory D17 Drosophila cells and negatively regulates multiple parameters of their motility. Finally, in vitro, Dm-Kat60 severs and depolymerizes microtubules from their ends. On the basis of these data, we propose that Dm-Kat60 removes tubulin from microtubule lattice or microtubule ends that contact specific cortical sites to prevent stable and/or lateral attachments. The asymmetric distribution of such an activity could help generate regional variations in microtubule behaviours involved in cell migration.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Movimiento Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Microtúbulos/metabolismo , Adenosina Trifosfatasas/genética , Animales , Ciclo Celular/fisiología , Línea Celular , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/ultraestructura , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Humanos , Katanina , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Interferencia de ARN , Tubulina (Proteína)/metabolismo
4.
Mol Biol Cell ; 20(22): 4696-705, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19793918

RESUMEN

Chromosome movements are linked to the active depolymerization of spindle microtubule (MT) ends. Here we identify the kinesin-13 family member, KLP59D, as a novel and uniquely important regulator of spindle MT dynamics and chromosome motility in Drosophila somatic cells. During prometaphase and metaphase, depletion of KLP59D, which targets to centrosomes and outer kinetochores, suppresses the depolymerization of spindle pole-associated MT minus ends, thereby inhibiting poleward tubulin Flux. Subsequently, during anaphase, loss of KLP59D strongly attenuates chromatid-to-pole motion by suppressing the depolymerization of both minus and plus ends of kinetochore-associated MTs. The mechanism of KLP59D's impact on spindle MT plus and minus ends appears to differ. Our data support a model in which KLP59D directly depolymerizes kinetochore-associated plus ends during anaphase, but influences minus ends indirectly by localizing the pole-associated MT depolymerase KLP10A. Finally, electron microscopy indicates that, unlike the other Drosophila kinesin-13s, KLP59D is largely incapable of oligomerizing into MT-associated rings in vitro, suggesting that such structures are not a requisite feature of kinetochore-based MT disassembly and chromosome movements.


Asunto(s)
Cromosomas/metabolismo , Proteínas de Drosophila/metabolismo , Exorribonucleasas/metabolismo , Cinesinas/metabolismo , Animales , Ciclo Celular/fisiología , Cromosomas/ultraestructura , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Exorribonucleasas/genética , Cinesinas/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Interferencia de ARN , Huso Acromático/metabolismo
5.
J Cell Biol ; 186(4): 481-90, 2009 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-19687256

RESUMEN

Microtubule (MT)-destabilizing kinesin 13s perform fundamental roles throughout the cell cycle. In this study, we show that the Drosophila melanogaster kinesin 13, KLP10A, is phosphorylated in vivo at a conserved serine (S573) positioned within the alpha-helix 5 of the motor domain. In vitro, a phosphomimic KLP10A S573E mutant displays a reduced capacity to depolymerize MTs but normal affinity for the MT lattice. In cells, replacement of endogenous KLP10A with KLP10A S573E dampens MT plus end dynamics throughout the cell cycle, whereas a nonphosphorylatable S573A mutant apparently enhances activity during mitosis. Electron microscopy suggests that KLP10A S573 phosphorylation alters its association with the MT lattice, whereas molecular dynamics simulations reveal how KLP10A phosphorylation can alter the kinesin-MT interface without changing important structural features within the motor's core. Finally, we identify casein kinase 1alpha as a possible candidate for KLP10A phosphorylation. We propose a model in which phosphorylation of the KLP10A motor domain provides a regulatory switch controlling the time and place of MT depolymerization.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Animales , Caseína Quinasa Ialfa/genética , Caseína Quinasa Ialfa/metabolismo , Línea Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Cinesinas/química , Cinesinas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...